Semes ter No.	Paper No.	Course Code	Title of Paper	The ory	Inter nal asse sme nt	Total Marks	Min Marks	
		B.Sc. First Year						
I	I	MCB-111	Fundamentals of Microbiology	(40)	10	(50)	20	
	II	MCB-112	Microbial Techniques	(40)	10	(50)	20	
	≡	MCB-121	Lab course I (based on MCB-111 & MCB-112)			(50)	20	
			Total			150	60	
=	IV	MCB-211	Microbial Chemistry	(40)	10	(50)	20	
	V	MCB-212	Bacterial Cytology and Virology	(40)	10	(50)	20	
	VI	MCB-221	Lab course II (based on MCB-211 & MCB-212)			50	20	
			Total			150	60	
		B.Sc. Second Year						
III	VII	MCB-311	Environmental Microbiology	(40)	10	(50)	20	
	VIII	MCB-312	Immunology and Clinical Microbiology	(40)	10	(50)	20	
	IX	MCB-321	Lab course 3 (based on MCB-311)			50	20	
	Х	MCB-322	Lab course 4 (based on MCB-312)			50	20	
			Total			200	80	
IV	XI	MCB-411	Food and Dairy Microbiology	(40)	10	(50)		
	XII	MCB-412	Microbial Physiology	(40)	10	(50)	20	
	XIII	MCB-421	Lab course 5 (based on MCB-411)			50	20	
	XIV	MCB-422	Lab course 6 (based on MCB-412)			50	20	
			Total			200	80	
		B.Sc. Third Year						
V	XV	MCB-511	Enzymology and Metabolism	(40)	10	(50)	20	
	XVI	MCB-512	Microbial Genetics	(40)	10	(50)	20	
	XVII	MCB-521	Lab course 7 (based on MCB-511)			50	20	
	XVIII	MCB-522	Lab course 8 (based on MCB-512)			50	20	
			Total			200	80	

VI	XIX	MCB-611	Molecular Biology& Genetic Engineering	(40)	10	(50)	20
	XX	MCB-612	Industrial Microbiology	(40)	10	(50)	20
	XXXI	MCB-621	Lab course I (based on MCB-611)			50	20
	XXXII	MCB-622	Lab course I (based on MCB-612)			50	20
			Total			200	80
Internal Assessment:							
Based on Assignment, Seminar, Unit Test & overall attendance and performance of the student							

Course structure of B.Sc. I (Microbiology optional subject)

(Choice Based Credit System)

Course	CourseTitle	Teachingtime/week	Marks	Credits	
MCB-111	Fundamentals of Microbiology	2 hours	50(40+10)	2	
MCB-112	Microbial Techniques	2hours	50(40+10)	2	
MCB-121	Lab course I (based on MCB-111 & MCB 112)		50	1.5	

Total credits for Semester I:6 (Theory: 4; Laboratory:2)

Semester II (Core Courses and Skill Enhancement courses)							
MCB-211	Microbial Chemistry	2hours	50 (40+10)	2			
MCB-212	Bacterial Cytology and Virology	2hours	50 (40+10)	2			
MCB-221	Lab course-2 (based on MCB-211 & MCB-212)	3 hours	50	1.5			

Total credits for Semester II: 6 (Theory: 4; Laboratory: 2)

B.Sc. First Year Semester - I

Paper-MCB-111. Fundamentals of Microbiology

Unit: I History of Microbiology (10)

- 1. Definition and concepts
- 1. Discovery of microorganisms: Contribution of Antony Van Leeuwenhoek.
- 2. Spontaneous generationtheory: Aristotles view, Charles Darwin view. Controversy over spontaneous generation
- 3. Recognition of the microbial role in diseases: Koch's postulates, Koch's direct stimulation theory, Aseptic surgery
- 4. Discovery of microbial effects on organic and inorganic matter.
- 5. Recognition of the microbial role in fermentation: Contribution of Louis Pasteur Stahls theory of fermentation,
- 6. Pure culture concept
- 7. Patenting of microorganisms: contribution of Louis Pasteur and Anand Chakraborty

Unit: IIMicroscopy(10)

- 1. Introduction of Magnification, resolving power, depth of focus, focal length, numerical aperture.
- 1. Electron Microscope: (SEM and TEM).
- 2. Phase contrast microscope.
- 3. Dark field microscope.
- 4. Fluorescence Microscope.
- 5. Atomic Force Microscope

Unit III Taxonomy of microorganisms. (10)

- 1. Taxonomic rank.
- 2. Major characteristics used in taxonomy (Morphological, Physiological, Immunological, Metabolic). Compositions of proteins, Composition of nucleic acids, Nucleic acids hybridization, Nucleic acid sequencing, 16S rDNA.
- 3. Classification system
- 4. Numerical taxonomy.
- Phenetic classification.
- 6. Bergey's manual of systematicBacteriology, General characteristics enlisting all parts with major characters and examples in brief.

Unit IV General characteristics of Microorganisms (10)

- 1. Fungi
- 2. Actinomycetes
- 3. Algae
- 4. Mycoplasma
- Rickettssia.

- Archaebacteria
- 7. Protozoa

Unit: V Tutorials, Seminars and Assignments (05 Periods)

B.Sc. First Year (CBCS) Paper – MCB-112-Microbial Techniques

Unit- I: Sterilization – contribution of

(10)

Richard J.Petri:Petriplates and their types

Schroederand Dusch: Cotton plug

C. Salomonsen: Hotair oven

Wireloop: Introduction, diameter, Connors transfer loop,

Roux and Yersin, Platinum needle.

Agar: Discovery, introduction, structure, classification of agar and

agargels. Uses of agar.

Agar slant apparatus: Introduction, diagram and angles used in

slant preparation.

Incubators: Types of incubator (Anaerobic incubator, Perfusion incubator, Pocket incubator, Thermal gradient incubator)

Pasteurizer: Beer pasteurizing apparatus.

Autoclave: Hotair oven

Radiations: (Gamma rays, X rays, Ultra violet rays)

Unit II: Disinfection

- a. Definition and concept: Disinfection, Germicide, Antiseptics, Bacteriostatic. Bactericidal
- b. Chemical sterilizing agents (Spectrum, Mode of action, Application, Limitations)

Phenolic, Alcohols, Halogens, Heavy metals, Quaternary ammonium Compounds, Aldehydes.

c. Sterilization using gases (Spectrum, Mode of action, Application, Limitations):Sulfur dioxide, Ethylene oxide and Beta propiolactone

d. Evaluation of disinfectants: Phenol coefficient

Unit - III Pure Culture Techniques

(10)

- A. Development of pure culture
- B. Single Cell Isolation
- C. Methods for isolation of pure culture-Streak plate method, Pour plate method, Spread plate methods
- D. Handling of pathogenic microorganisms
- E. Methods for disposal of microbial wastes
- F. Techniques for enumeration of microorganisms

Cell count by Direct Microscopic Count, Colony count Measurement of turbidity, Measurement of cell mass

Cultivation of microorganisms

- A. Properties of a good culture medium.
- B. Definition and concept
 - a. Living media: Embryonated chicken eggs, Tissue culture & Animals
 - b. Non living media: Natural, Semi-synthetic & Synthetic
- C. Types of culture media on the based of their specific use w.r.t. role of media ingredients (with examples)

Selective, Differential, Enriched, Enrichment, Assay, Minimal, Maintenance and Transport media

- D. Role of Buffers in culture media.
- E. Media used for cultivation of bacteria, fungi, actinomycetes, yeasts, algae and photosynthetic bacteria (at least two)
- F. Techniques for cultivation of anaerobes: John H. Brewer Instrument and Anaerobic Jar closure assembly
- G. Method for detecting microscopic organisms using bacteriophage: Kent J. Voorhees Apparatus.
- H. Measurement of gas production by Wilkins et al method.

Unit IV - Stains and Staining

(10)

- A. Fundamentals of microorganisms
 - a. Definition: stain, dye, chromogen, chromophore, auxochrome,
 - b. Types of stains: Acidic, basic
 - c. Staining reagent: Primary stain, Secondary stain, Mordant and Decolorizer
 - d. Fixation of Smear: Physical and Chemical methods Physicochemical basis of staining.
- B. Staining methods
 - a. Staining (Principle, application and methodology)
 Monochrome staining and Negative staining
 - b. Differential staining (Principle, application and methodology)
 Gram' s staining and Acid fast staining
 - c. Structural/Special staining procedures Cell wall, Capsule, Spore, Flagella, Metachromatic granule, Blood staining
 - d. Staining of Fungi.
 - c. Micrometry
 - d. Hanging drop technique
 - e. Microscopic photograph

Unit: V Tutorials, Seminars and Assignments

(05 Periods)

B.Sc. First Year (CBCS) Paper - MCB-211 . Microbial Chemistry

Unit-1: Basic Principles (10)

- I. Concepts of Atom, Molecule, pH, Acids, Bases, Buffer, Solvent, Solute, Types of solutions (hypotonic, hypertonic, isotonic) and redox potential
- $II.\ Types\ of\ Isomers\ and\ their\ importance\ in\ biology.$
- III. Types of bonds and their importance: Electrovalent, covalent, non-covalent, Ester, Phospho-diester, Thio-ester, Peptide, Glycosides

UnitII: Amino acids and Proteins (10)

Amino Acids: Definition, General structure and features of amino acids, amphoteric nature, List of 20 amino acids. Classification of amino acids: based on R-group, Uncommon amino acids and their functions.

Proteins: Definition. Classification of Proteins, Primary, secondary, tertiary, quaternary structures of proteins (outline). Biological significance of proteins. Classification of Proteins, Primary, secondary, tertiary, quaternary structures of proteins. Biological significance of proteins

Unit-III: Carbohydrates (10)

- a) Definition and Classification. b] Monosaccharides, Triose, Tetrose, Pentose, Hexose (Examples and structures). c] Disaccharides: Glycoside Linkage (Lactose, Maltose and Sucrose). d] Oligosaccharides: Trisaccharides (Structure of raffinose).
- e] Polysaccharides: Homo and heteropolysaccharides, structure of (Starch, Cellulose, Hyluronocacid)., Biological Significance of carbohydrates.

Unit IV : Lipids and Nucleic acids (12)

 $Definition and \ Classification. \ Types of Lipids: Simple lipids-Trigly cerides.$

Conjugated Lipids- Phospholipids, Phosphatidic acid, and Cholesterol. Biological importance of Lipids.

Purine, pyrimidine bases, Ribose and Deoxyribose sugars, phosphodiester bonds, m-RNA, t-RNA and r-RNA.

(05Periods)

Paper MCB-212-Bacterial Cytology and Virology

Unit- 1: Bacterial morphology and outer ultra structures of cell. (10)

- 1. Cytology of a typical bacterial cell.
- 2. Morphology size and arrangement of bacterial cells.
- 3. Structure, chemical composition and functions of:
 - i. Capsule and slime layer
 - ii. Flagella: Arrangement, Structure, mechanism of flagellar movement, Chemotaxis, phototaxis, Magnetotaxis.
- iii. Pili
- iv. Cellwall: Grampositive and Gramnegative bacteria
- v. Cellmembrane/Unitmembrane

Unit – 2: Bacterial morphology and inner ultra structures of cell. (10)

- i. Bacterial Endospores: Structure, Formation and Germination process
- ii. Ribosomes.
- iii. Nuclear material
- iv. Mesosomes
- v. Reserved food material: Nitrogenous, Non-nitrogenous (Starch and Glycogen, Poly beta hydroxy butyric acid), polyphosphate, Sulfur granules.
- 4. Bacterial cell division: Binary fission

Unit -3: Viral Morphology and Genomic structure

(10)

- 1. Introduction and General characteristics
- 2. Discovery and Early development of Virology
- 3. Virions, Viroids, Virusoids, Prions.

- 4. Structure of viruses: Size, Shape, Proteins, Capsids and capsomers.
 - i) The structure of filamentous viruses and nucleoproteins
 - ii) The structure of isometric viruses (tetrahedron, cube, octahedron, dodecahedron, icosahedrons)
 - iii) Enveloped (membrane bound) viruses
 - iv) Viruses with head-tail morphology

5. Viral genomes

- i) Positive-Sense Single stranded RNA Viruses
- ii) Negative-Sense Single stranded RNA Viruses
- iii) Double-Stranded RNA Viruses
- iv) Retroviruses
- v) Double-Stranded DNA Viruses
- vi) Single-Stranded DNA Viruses

Unit-4: Classification, Multiplication, Cultivation and Impact of viruses (10)

- 1. Classification: ICTV (International Committee on Taxonomy of Viruses), Baltimore and LHT System)
- 2. Multiplication: Lytic cycle in Animal and Bacteria
- 3. Lysogeny
- 4. Cultivation of Viruses: Egg inoculation and Tissue culture
- 5. List of common viral diseases with causative agents and important symptoms in plants, animals and human beings.
- 6. Emerging human viral diseases
 - i. H1N1 Influenza Virus (Swine Flu)
 - ii. Avian Influenza (Bird Flu)
 - iii. Ebola Hemorrhagic Fever (Ebola virus disease)
 - iv. Chikungunya Virus
 - v. Severe acute respiratory syndrome (SARS)
 - vi. Nipah virus disease
 - vii. Zika virus infection
- 7. Viruses and cancer
- 8. Viral vaccines
- 9. Antiviral therapy (Drugs and interferons)
- 10. Viruses used in Recombinant DNA technology

UnitV: Tutorials, Seminars and Assignments (05 Periods)

B. Sc. First Year MICROBIOLOGY

Lab Course 1 MCB-121

- Microscopy- Different parts of compound microscope. Use and care of compound microscope
- 2. Preparation of Standard Operating Procedures (SOPs) for common microbiology laboratory instruments: Introduction to Laboratory equipments, Construction, Operation and utility of laboratory equipments.

 a)Autoclave
 - b) Hot air oven
 - c) Incubator
 - d) pH meter
 - e) Centrifuge
 - f) Colorimeter/Spectrophotometer
 - g) Anaerobic jar
 - h) Seitz filter

- i) Laminar air flow
 - 3. Disinfection & discarding techniques in laboratory
 - 4. Staining
 - a. Simple staining: Monochrome, Negative
 - b. Differential: Gram's staining
 - c. Structural staining:
- i. Cell wall staining (Chance's method)
 - ii. Capsule staining (Maneval's method)
 - iii. Spore staining (Schaeffer and Fultons's method)
 - 5. Hanging drop technique.
 - 6. Measurement of size of cells by micrometry
 - 7. Preparation of buffers-Citrate and phosphate buffer
 - 8. Study tour to related laboratories /industries

B. Sc. First Year MICROBIOLOGY

Lab Course 2 MCB-221

- 1. Cleaning and sterilization of glassware: Preparative procedures for glasswares before sterilization.
- 2. Study of aseptic techniques: Preparation of cotton plugs for test tubes and pipettes, wrapping of petriplates and pipettes, Methods of inoculum transfer.
- 3. Preparation of Media: Nutrient broth, Nutrient Agar, MacConkey" s broth and agar, Sabouraud's Agar.
- 4. Study of bacterial growth curve
- 5. Study of methods of isolation of bacteria from mixed cultures:
- i) Streak plate technique
 - ii) Spread plate technique
 - iii) Pour plate technique

- 6. Morphological, Cultural characterization of isolates.
- 7. Effect of pH, Temperature & UV on bacterial growth
- 8. Isolation of Bacteriaand Fungi from soil
- a) Preparation of serial dilutions.
- b) Spread plate and pour plate techniques
- 11. Qualitative tests for:
 - I. Carbohydrates-Benedict' stest
 - II. Proteins-BiuretTest
 - III. Nucleic acids-DNA-Diphenyl amine test and RNA-Orcinol test

Books Recommended for Theory & Practical of B.Sc.I, SEMI & II

- 1. General Microbiology by Hans G. Schlegel.
- 2. General Microbiology by R.Y. Stayner.
- 3. Fundamentals of Microbiology by Crabtree, & Martin Frobisher.
- 4. Fundamentals of Bacteriology by A.J. Salle
- 5. Atext of Microbiology by Dubey RC and Maheswari DK (2012).
- 6. GeetaSumbali and Mehrotra RS (2009). Principles of Microbiology.
- 7. General Microbiology volume 1 and 2 by Powar CB and Daginawala HF.
- 8. Microbiology by Pelczar TRM J Chan ECS and Kreig N R.
- 9. Robert F Boyd (1984). General microbiology.
- 10. Microbiology by Prescott LM, JP Harley and DAKlein.
- 11. Introduction to Microbiology by Ingraham J.L. and Ingrahm C.A
- 12. History of Microbiology & Microbiological Methods by A.B. Solunke, V.S. Hamde, R.S. Awasthi& P.R. Thorat.
- 13. General Microbiology by Hans G. Schlegel.
- 14. Air Microbiology an environment & Health Prospective by S.C. Aithal, P.S. Wakte& A.V. Manwar.
- 15. Water Microbiology by S.C. Aithal, & N. Kulkarni.
- 16. General Microbiology by R.Y. Stayner.
- 17. A text of Microbiology by Dubey RC and Maheswari DK.
- 18. Manual of Methods for Pure Culture Study by A.B. Solunke, V.S. Hamde, R.S. Awasthi& P.S. Wakte.
- 19. Text Book of Microbial Chemistry and Physiology by P.H.Kumbhare&U.V.ThoolRajaniPrakashan, Nagpur.
- 20. Text Book of Applied Microbiology by P.H. Kumbhare & U.V. Thool, Rajani Prakashan, Nagpur.
- 21. General Virology by Luria S.E.
- 22. A textbook of Fungiand Viruses by Dubey H.C.
- 23. Alcamo Fundamentals of Microbiology

- 24. Experiments in Microbiology by Aneja K.R.
- 25. Introduction to Microbial Techniques by Gunasekaran,
- 26. Elementary Microbiology by Modi H.A.
- 27. Handbook of Media, Stain and Reagents in Microbiology by Deshmukh A.M.,
- 28. Biology of Microorganisms by Brock T.D. and Madigan M.T.
- 29. Biochemistry by J.L. Jain
- 30. Biochemistry by Zubay
- $31. Principles of Biochemistry \, by \, Nelson \, David \, Land \, Cox \, Michael \, M. \, Lehninger.$
- 32. Disinfectants and Disinfection by A.G. Young
- 33. Filtration by F.E. Vey
- 34. Biological Stains by H. J. Conn.

B. Sc. Second Year
[Microbiology]Semester III
Paper MCB-311
Environmental Microbiology

Unit 1: Microbiology of air: (10)

Composition of air.

Number and kinds of microorganisms in air (indoor outdoor Distribution and sources of

our borne microorganisms.

Air as a carrier of microorganisms

Droplet, droplet nuclei, Dispersal of Microorganisms in air. Techniques for microbiological analysis of air.

Significance of air flora in human health, hospitals, industries.

Air sanitation- dust control, UV radiation, bactericidal vapors, filtration, Laminar air flow system (HEPAfilters)

Unit 2. Microbiology of Water and Waste water: (10)

sources of microbes in water.

Determining sanitary quality of water indicators of fecal pollution:

Fecal and non fecal coliforms (IMVIC& elevated temperature tests).

Bacteriological examination of water: Presumptive, confirmed, completed test, SPC,

MPN and Membrane filter technique.

Water purification methods: Disinfection of potable water supplies.

Definition of sewage and chemical composition.

Microbiology of sewage treatment: septic tank, evapotranspiration, Imhoff's tank

Muncipal sewage treatment process: Primary, Secondary, (aerobic and anaerobic process), chemical treatment chlorination.

Disposal of treated sewage. (Sludge as fertilizer, imigation and dilution)

Unit 3. Microbiology of Soil:

(10)

Soil as an environment, as a culture medium.

Brief account and definition of microbial interactions with examples.

Symbiosis, mutualism, commensalism, competition, synergism, satellitism, predation, parasitism with example:

I Microbe-microbe interactions (any one example)

II. Plant-microbe interactions (Phyllosphere)

III. Animal-microbe interactions [Rumen; Bioluminescence)

Major biogeochemical cycles: Carbon nitrogen, phosphorus, sulphur (cyclic turnover with microbiology). General account of microbes used as biofertilizers, phosphate solubilizers.

(Defination, Types, advantages, disadvantages) Rhizosphere: definition, rhizosphere and non rhizospheremicroflora and R: S ratio, significance for fertility.

Unit 4. Environmental Pollution

(10)

Air pollution sources, causes, health hazards, airborne diseases any 5 (list of causative agents) Water pollution: sources, causes, health hazards, waterborne diseases any 5 (list of causative agents). Waste water pollution: sources, causes, health hazards, Eutrofication and Acid mine drainage:basic concept,

Soil: sources, causes, health hazards,

UnitV: Tutorials, Seminars and Assignments (05 Periods)

B.Sc. Second Year MICROBIOLOGY

LabCourse3MCB-221

- 1. Enumeration of microbes from: Indoor and outdoor environment.
- 2. Bacteriological examination of drinking water: MPN, SPC
- 3. Qualitative analysis of water: Presumptive, Confirmed, Completed test
- 4. Demonstration of Automated water testing methods (The growth direct by Rapidmicro biosystem, Bioburden testing)
- 5. Dust Fall Jar: Construction and analysis of pollution trend in the selected area.
- 6. Collection of Data from Internet: Respiratory suspended particulate matter (RSPM) in various metro cities in India
- 7. Fabrication: Fabricate Sedimentation Tank in the laboratory.
- 8. Testing of (water & domestic sewage) for physicochemical parameters like chlorine, phosphate, nitrate and BOD and COD, TS, TDS, TSS.
- 9. Isolation of E. coli and identification by IMVIC
- 10. Isolation of coliphages from sewage
- 11. Isolation enteric pathogens from domestic sewage (salmonella and shigella spp)