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Introduction:- 
Banach Fixed Point theorem also called contraction mapping principle or contraction mapping theorem [5]. In 

metric space gives guarantees the existence and uniqueness of fixed point of some self-mappings of metric space 

providing constructive method stated by Stephan Banach in 1922. In recent years lot of work have been done in non-

linear analysis, the study of non-contraction mapping with the existence of fixed point take attention of some authors 

in non-linear analysis with the details of existence of a fixed point and also the non-expansive mapping.  

 

Random fixed point theorems in abstract space are useful in the study of non-linear random equations for proving 

the existence and uniqueness of theorems. It‟s well known that a physical problems the differential and integral 

equations are generally non-linear, so Banach contraction principle [7] provides a powerful tool for getting the 

solution of their equation. Many problems of analysis and applied mathematics are used to find the solutions of non-

linear functional equations which can be formulated in terms of finding the fixed points of a non-linear mapping. 

 

Preliminaries:- 
We recall some definitions and properties of normed linear space.  

Definition 2.1 A set X of elements is called a vector space or linear space or Linear Vector Space over the real‟s if 

we have a function + on X x X to X and a function dot (∙) on R x X to X that satisfy the following conditions 

 x y y x    

 ( ) ( )x y z x y x      

 There exist x   such that x x   for all x X . 

 ( )x y x y      , R , ,x y R . 

 ( ) ( )x x   , , R  , x X . 

 0.x  , 1.x x . 

Here we call „+‟ addition and „∙‟ scalar multiplication and   is unique. 
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Definition 2.2 Let X be a vector space over the real or complex number, A mapping . : X R  is called a norm 

provided that the following conditions are satisfied following conditions 

1. 0 0x x    

2. x y x y    

3. x x   

If X is a vector space and .  is a norm on X then the pair  , .x  is called norms vector space. We called X is a 

metric space if X is a vector space and .  is norm on X and we define metric d by ( , )d x y x y   for all x, y  in 

X. 

If a normed vector space is complete in this metric then it is called a Banach Space. 

 

Remark 2.1 If we define a metric space   by ( , )x y x y    then a normed vector space becomes a metric 

space. 

 

Definition 2.3 (Banach Space) A Banach Space  , .x  is a normed vector space such that X is complete under the 

metric included by the norm .
 

 

Definition 2.4 A sequence { }kx in a normed linear space is said to be a Cauchy sequence if 0k lx x  as k, l 

tends to infinity. i.e for given  > 0 there exist an integer N such that k lx x    for all k, l > N. 

 

Definition 2.5[9]  Let X is a metric space equipped with a distance d and a mapping f from X to X is said to be 

Lipschitz continuous if there exist 0  such that, 

   ( ( ), ( )) ( , )d f k f l d k l  for all ,k l X . 

The λ for which the above inequality holds is the Lipschitz constant of  f. 

If λ= 1 then f is said to be non-expansive and if λ < 1 then f is said to be a contradiction. 

 

Fixed Point Theorem For Self Mapping In Banach Space:- 
The Banach Fixed point theorem states as follows 

Theorem 3.1[7] Let (X, ) complete metric space and :f X X is a contraction then f has a unique fixed point. 

Theorem 3.2 Let f be mapping of a Banach space X into itself, if f satisfies the following conditions, f
2
= I where I is 

identity mapping.  

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

k l k f k k f k k f l k f l l f k
f k f l

k l l f l


       
 

  
 

      ( ) ( ) ( ) ( )k f k l f l k f l l f k k l             

Then for every ,k l  belongs to X, 0 , , & 1      and 5 4 2       is less than 2 then f has a fixed 

point. If 2 1     then f has a unique fixed point. 

Proof: Suppose that k is a fixed point of the Banach Space X. 

 Let   
( )

2

f I k
,   ( )m f l   and  2t l m   then we have 

2( ) ( ) ( ) ( ( )m k f l f k f l f f k      



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 5(6), 2246-2251 

2248 

 

 

2 2

2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

l f k l f l l f l l f k l f k f k f l

l f k f k f k


       


  
 

    2 2( ) ( ) ( ) ( ) ( ) ( ) ( )l f l f k f k l f k f k f l l f k             

( ) ( ) ( ) ( ) ( )

( ) ( )

l f k l f l l f l k l k l f k f l
m k

l f k k f k


       
 

  
 

    ( ) ( ) ( ) ( ) ( )l f l k f k k l f k f l l f k             

 
( ) ( )

( ) ( )
l f l k f k

m k f k f l
k l


 

   


 

     ( ) ( ) ( ) ( ) ( )l f l k f k k l f k f l l f k             

 
( ) ( ) ( ) ( )l f l k f k k l f k f l

m k
k l


    

 


     

    ( ) ( ) ( ) ( ) ( )l f l k f k k l f k f l l f k             

 
( ) ( )

( ) ( )
l f l k f k

m k f k f l
k l


 

   


      

    ( ) ( ) ( ) ( ) ( )l f l k f k k l f k f l l f k             

1
21

2

( ) ( )
( ) ( ( ) )

( )

l f l k f k
m k f k f f I x

k f I x

  

     
  

    

 

  1 1 1
2 2 2

( ) ( ) ( ) ( ) ( ( ) ) ( ) ( )l f l k f k k f I x f k f f I x f I x f k                
 

1
21

2

( ) ( )
( )

( )

l f l k f k
m k k f k

k f x

  

    
 

 

   1 1 1
2 2 2

( ) ( ) ( ) ( ) ( )l f l k f k k f k k f k k f k                

1 1
2 2

2 ( ) ( ) ( )m k l f l k f k k f k            

    1
2

( ) ( ) ( ) ( )l f l k f k k f k k f k              

 2 2
( ) (2 ) ( )m k k f k l f l

              

 1
2

2 ( ) ( ) ( ) ( )t k l t k f I x m x f k m f k f l             

 
( ) ( ) ( ) ( ) ( )

( )

k l k f k k f k k f l k f l l f k
m k

k l l f l


       
 

  
 

     ( ) ( ) ( ) ( )k f k l f l k f l l f k k l             

 ( ) ( ) ( ) ( )

( )

k f k k l k f k k f l l f k
m k

k f l
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     ( ) ( ) ( ) ( )k f k l f l k f l l f k k l             

( ) ( )
( )

( )

k f k l f l
m k l f k

k f l

  

    
 

 

     ( ) ( ) ( ) ( )k f k l f l k f l l f k k l             

1
21

2

( ) ( )
( ) ( )

( ( )

k f k l f l
m k f I xl f k

k f f I x

  

     
  

 

   1 1 1
2 2 2

( ) ( ) ( ( ) ( ) ( ) ( )k f k l f l k f f I x f I x f k k f I x m k                 

1
21

2

( ) ( )
( )

( )

k f k l f l
m k k f k

k f x

  

    
 

 

     1 1 1
2 2 2

( ) ( ) ( ) ( ) ( )k f k l f l k f k k f k k f k             

 1
2

2 ( ) ( ) ( ) ( )m k l f l k f k k f k l f l                   

   1
2

( ) ( )k f k k f k      

 2 2
( ) (2 ) ( )m k k f k l f l

             
 

    (I) 

Then, 

( ) ( ) ( ( ) ( )m t m k k t m k k t          

   2 2
( ) (2 ) ( )k f k l f l

            
 

     

  2 2
( ) (2 ) ( )k f k l f l

            
 

 

 2 2 ( ) (4 2 ) ( )m t k f k l f l                  

And also, 

      ( ) (2 )m k f l l m     

  
( ) 2 ( ))

2 ( )

f l l f l

l f l

  

 
       (II) 

 2 ( ) ( 2 2 2 2 ) ( ) (4 2 2 ) ( )l f l k f k l f l                       

    2 (4 2 2 ) ( )l f l       

   ( 2 2 2 2 ) ( )k f k               

 ( ) ( )l f l k f k     ,  where  
 

 

2 2 2 2
1

2 (4 2 2

      


  

     
 

  
 

Where,  5 4 2 2        

Let us consider 
1
2
( )f I    then for every k X , we have 

2( ) ( ) ( )k k l l      

                                                        1
2
( )f I l l    

     1
2

( )l f l   
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2

( )k f k


   

Then from the definition of   we say that 
2{ ( )}k is a Cauchy sequence in X.  And hence by completeness 

2{ ( )}k converges to some elements 0k X . 

Hence ,     
2

0lim ( )
n

k k


   

    ∴  0 0( )k k   

   i.e.  0k  is fixed point of f . 

About Uniqueness if possible let 0 0l k  is another fixed point of f ,  then 

0 0 0 0( ) ( )k l f k f l    

  
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

( ) ( ) ( ) ( ) ( )

( )

k l k f k k f k k f l k f l l f k

k l l f l


       


  
 

   0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( )k f k l f l k f l l f k k l             

2

0 0

0 0 0 0 0 0

0 0

2
k l

k l k l k l
k l

  


     


 

  0 0 0 0 0 02k l k l k l         

0 0 0 0 0 02k l k l k l         

0 0 0 0( 2 )k l k l        

              This is a contradiction.   

Hence   0 0k l          ∴ fixed point is unique. 

                                                      This completes the proof. 

Theorem 3.3[8] Let f be mapping of a Banach space X into itself, if f satisfies the following conditions, 
3 3

2 2
( )

q fq fp p q p q fp fp p fp fq q p q fp
fq f fp

q fp q fp
 

         
  

 
 

  q fq fp p q p fp fq q fp                        

 
33 11 1

22 8

2 2
1 1
4 4

fp p fp q q fq p fp q fpq fq fp p p fp p fp

p fp p fp
 

          
 

 

 1 1
2 2

q fq fp p p fp fp q q fq p fp                          

f
2
= I,  where I is identity mapping 

3 3

2 2

q fq p fp p fq p q q fq q fp p fq p q
fp fq

p q p q
 

         
  

 
 

 p fp q fq p fq q fp p q                        

With the equation 10 9 8 5 4         and p q , then it has a unique fixed point. 

 

Theorem 3.3[6] Let f be mapping of a Banach space X into itself, if f satisfies the following conditions, f
2
= I,  

where I is identity mapping then, 
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  ) max , , ,
1

p fp q fq
fp fq p q p fp q fq

p q


  
     

  

 

   p fp q fq p fq q fp p q                         

Then for every ,p q  belongs to X, 0 , , & 1      and 4 3 3 2        is less than 2 then f has a 

fixed point. If 2 1    
  

then f has a unique fixed point. 

 

Conclusion:- 
In this paper we have presented some random fixed point theorems by new rational expression for Self Mappings in 

Banach Space which satisfy some contractive conditions  
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