ISSN: 2456-1452 Maths 2018; 3(2): 219-226 © 2018 Stats & Maths www.mathsjournal.com Received: 15-01-2018 Accepted: 16-02-2018

Suhas S Patil Research Scholar, S.R.T.M. University, Nanded, Maharashtra, India

UP Dolhare

Associate Professor, Department of Mathematics, D.S.M. College, Jintur, Maharashtra, India

Correspondence Suhas S Patil Research Scholar, S.R.T.M. University, Nanded,

Maharashtra, India

Generalized contractive conditions and single valued mapping in complete metric space

Suhas S Patil and UP Dolhare

Abstract

There are great number of generalizations of well-known Banach contraction mapping principle, M. Edelstein [01] was extended and defined contractive mapping. A contractive mapping is always continuous and which has a unique fixed point. M. Edelstein [01] proved that if T is a contractive mapping on a compact metric space (X, d) to itself then there exists a unique fixed point of T.

Keywords: Contraction mapping, contractive mapping, cauchy sequence and single-valued mapping

1. Introduction

In functional analysis the fixed point theory having incredible research field in applied mathematics. Also it has various applications to non-linear Sciences, Stefan Banach had proved one of the most famous result of fixed point theorem, which is the initial path in this direction of metric fixed point theory. A common fixed point theorem in metric space generally involves conditions of continuity, commutativity and contraction conditions with completeness. In 1976 G. Jungck ^[10] was the first mathematician who generalized the Banach contraction theorem by using commuting mappings and it has open problem that a pair of commuting and continuous self mapping in the interval [0,1] which has not a common fixed point.

There are great numbers of generalizations of well-known Banach contraction mapping principle. M. Edelstein $^{[01]}$ extended and defined contractive mapping such as "A mapping T of

a metric space (X, d) into itself is said to be contractive if

$$d(T(x), T(y)) < d(x, y)$$
, for $x \neq y$ and $x, y \in X$.

A contraction mapping is always continuous and which has a unique fixed point. M. Edelstein

^[01] proved that if T is a contractive mapping on a compact metric space (X, d) to itself then there exists a unique fixed point of T.

Now we consider some important generalization of Banach contraction mapping principle. In 1969 D. W. Boyd and J. S. W. Wong ^[02] obtain the following generalization of contraction mapping theorem.

Definition 1.1

A function $\delta: R_+ \to R_+$ is said to be upper semi continuous from the right if $r_{n\downarrow} r \ge 0$

 $\therefore \lim_{n \to \infty} \sup \delta(r_n) \le \delta(r)$

Theorem 1.1

In a complete metric space (X, d) if $T : X \to X$ satisfied $d(T(x), T(y)) \le \delta[d(x, y)]$, for all $x, y \in X$.

If $\delta: R \to [0, \infty)$ be upper semi-continuous from the right such that $\delta(t) \in [0, t)$, t > 0 then *T* has a unique fixed point in *X* and $\{T^{(n)}(x)\}$ converges to fixed point for all $x \in X$.

Proof: For any fixed point i.e. $x \in X$, let $x_n = T^n(x)$ for any $n = 1, 2, 3, \dots, \infty$ and $a_n = d(x_n, x_{n+1}) = d(T^n(x), T^{n+1}(x))$. Here we show that a_n is convergent. Assume that $a_n > 0$ for all n > 0 then for all n > 1.

$$a_{n} = d[T^{n}(x), T^{n+1}(x)] = d[T(x_{n-1}), T(x_{n})]$$

$$\leq \delta[d(x_{n-1}, x_{n})] = \delta(a_{n-1})$$

$$< a_{n-1}$$

Hence the sequence $\{a_n\}$ is monotonically decreasing and bounded below, so it is convergent.

$$\lim_{n \to \infty} a_n = a$$
 we show that $a=0$, if $a > 0$ then $a_{n+1} \le \delta(a_n)$

Then by the upper semi continuity from the right of the function δ we get $a \leq \delta(a)$ which is a contradiction with the property of δ . Thus a = 0 and $a_n \rightarrow 0$ as $n \rightarrow \infty$.

We say that ${x_n}$ is a Cauchy sequence but assume that the sequence ${x_n}$ is not a Cauchy sequence then there exist $\alpha > 0$ such that for any $k \in N$ there exist $m_k > n_k \ge k$ such that

$$d(x_{mk}, x_{nk}) \ge \alpha \qquad \dots \dots (1)$$

Let us assume that for each k, the smallest number $m_k > n_k$ for each equation (1) holds $a_k = d(x_{mk}, x_{nk})$.

 $\lim_{n \to \infty} d(x_n, x_{n+1}) = \lim_{n \to \infty} a_n = 0$ there exist k_0 such that $d(x_k, x_{k+1}) \le \alpha$ for all $k \ge k_0$ for each k we have

$$\alpha \leq d(x_{mk}, x_{nk}) \leq d(x_{mk}, x_{mk-1}) + d(x_{mk-1}, x_{nk})$$
$$\leq d(x_{mk}, x_{mk-1}) + \alpha \leq d(x_{k}, x_{k-1}) + \alpha.$$

 $\lim_{k \to \infty} d(x_{mk}, x_{nk}) = \lim_{k \to \infty} a_k = \alpha$ It proves that

On the other hand we have,

$$d(x_{mk}, x_{nk}) \leq d(x_{mk}, x_{mk+1}) + d(x_{mk+1}, x_{nk+1}) + d(x_{nk+1}, x_{nk})$$

$$\leq a_{mk} + \delta(d(x_{mk}, x_{nk})) + a_{nk}$$

$$\leq 2a_{k} + \delta(d(x_{mk}, x_{nk})).$$

As $k \to \infty$ we obtain the following condition

$$\alpha = \lim_{n \to \infty} d(x_{mk}, x_{nk}) \le \lim_{n \to \infty} (2a_k + \delta(x_{mk-1}, x_{nk})) = \delta(\alpha)$$

Thus $\alpha \leq \delta(\alpha)$ this is contradiction. Hence $\{T^n(x)\} = \{x_n\}$ is a Cauchy sequence. Since $\{T^n(x)\}$ is a Cauchy sequence and X is complete.

 $\lim_{n \to \infty} T^{n}(x) = x$ Therefore $x \in X$. Since *T* is continuous hence T(x) = x. **Remark 1.1** In above theorem 1.1 if we replace the condition $\delta(t) < t$ by the condition $\delta(t_0) < t_0$ for at least one value to t_0 then T may not have a fixed point.

Example 1.1 Let $X = (-\infty, -1] \cup [1, \infty)$ be a metric space with the metric X and let

$$T_{1}(x) = \begin{cases} \frac{1}{2}(x+1), & \text{if } x \ge 1 \\ \\ \frac{1}{2}(x-1), & \text{if } x \le -1 \end{cases}$$
 and $T_{2}(x) = -T_{1}(x)$, for all $x \in X$.

Hence T_1 and T_2 satisfies the equation (1)

$$\delta(t) = \begin{cases} \frac{1}{2}t, & \text{if } t < 2 \\ \\ \frac{1}{2}(t+1), & \text{if } t \geq 2 \end{cases}$$

Hence the function δ satisfies all the conditions in above theorem except $\delta^{(2)} = 2$. And we observe that T_1 has two fixed points -1 and 1, while T_2 has no fixed points.

In the following result the continuity condition on δ is replaced with another suitable condition.

Theorem 1.2

In a complete metric space (X, d) let $T: X \to X$ be the mapping has satisfies

$$d(T(x), T(y)) \le \delta[d(x, y)]$$
, for all $x, y \in X$

 $\lim_{n \to \infty} \delta^{n}(t) = 0$ for all t > 0 then it has a unique where $\delta: (0,\infty) \to (0,\infty)$ be monotone non-decreasing function and satisfies $\sum_{n \to \infty}^{n \to \infty} \delta_n$ fixed point x and

$$\lim_{n \to \infty} d(T^{n}(x), x) = 0 \quad \text{for all } x \in X$$

Proof. Let $x_n = T^n(x)$ for $n = 1, 2, 3, \dots, \infty$ for any $x \in X$ then $x_1 = T(x) \neq x$ otherwise x would be a fixed point of T then

$$d(T^{n}(x), T^{n+1}(x)) \leq \delta(T^{n-1}(x), T^{n}(x))$$

$$\leq \delta^{2}(d(T^{n-2}(x), T^{n-1}(x)))$$

.....
$$\leq \delta^{n}(d(x), T(x)) = \delta^{n}(d(x, x_{1})).$$

Hence

$$0 \leq \lim_{n \to \infty} d(x_n, x_{n+1}) = \lim_{n \to \infty} d(T^n(x), T^{n+1}(x))$$
$$\leq \lim_{n \to \infty} \delta^n [d(x, x_1)] = 0$$

Thus

 $\lim \, d\,(x_{n}, x_{n+1}) = 0.$

We show that ${x_n}$ is a Cauchy sequence. Since $\delta^n(t) \to 0$ for all t > 0, $\delta(\alpha) < \alpha$ for any $\alpha > 0$.

 $\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$ Since a_{n+1} for any $\alpha > 0$, then we choose *n* such that $d(x_{n+1}, x_n) \leq \alpha - \delta(\alpha)$

Let
$$P_{\alpha}(x_n) = \{x \in X : d(x, x_n) \le \alpha\}$$
 if $z \in P_{\alpha}(x_n)$ then $d(z, x_n) \le \alpha$ and
 $d(T(z), x_n) \le d(T(z), T(x_n)) + d(T(x_n), x_n)$
 $\le \delta(d(z, x_n)) + d(x_{n+1}, x_n)$ as $T(x_n) = x_{n+1}$
 $\le \delta(\alpha) + (\alpha - \psi(\alpha)) = \alpha$

Therefore $T(z) \in P_{\alpha}(x_n)$ and $T: P_{\alpha}(x_n) \to P_{\alpha}(x_n)$.

It follows that $d(x_m, x_n) \le \alpha$ for all $m \ge n$ and hence $\{x_n\}$ is a Cauchy sequence. Which is the conclusion of our proof follows as in above theorem 1.4.1.

Now in the following theorem we present a different kind of principle in which the contractive condition is imposed only at the first step.

Theorem 1.3

Let (X, d) is a complete metric space and $T: X \to X$ be a continuous mapping such that for some function $\gamma: X \to R$ the following condition holds

$$d(x, T(x)) \le \gamma(x) - \gamma(T(x)), \text{ for } x \in X \dots \dots (I)$$

then ${T^{(n)}(x)}$ converges to a fixed point of T for all $x \in X$.

Proof. For any $x \in X$ let $x_n = T^n(x)$ for $n = 1, 2, 3, \dots, \infty$ then by the inequality (I) we have $0 \le \gamma(x) - \gamma(T(x))$ if and only if $\gamma(T(x) \le \gamma(x))$ for all $x \in X$.

$$\therefore \gamma(x_{n+1}) = \gamma(T^{n+1}(x)) = \gamma(T(T^{n}(x)))$$
$$= \gamma(T^{n}(x) \le \gamma(x_{n}))$$

Thus $\{\gamma(T^{n}(x))\} = \{\gamma(x_{n})\}\$ is monotonically decreasing and bounded below.

 $\lim_{n \to \infty} \gamma(T^{n}(x)) = r \ge 0$ Hence $\sum_{n \to \infty}^{n \to \infty}$, by the triangle inequality if $m, n \in N \& m > n$ then

$$d(T^{n}(x), T^{m}(x)) \leq d(T^{n}(x), T^{n+1}(x)) + d(T^{n+1}(x), T^{n+2}(x)) + \dots + d(T^{m-1}(x), T^{m}(x))$$

$$\leq \gamma(T^{n}(x)) - \gamma(T^{n+1}(x)) + \gamma(T^{n+1}(x)) - \gamma(T^{n+2}(x)) + \dots + \gamma(T^{m-1}(x)) - \gamma(T^{m}(x))$$

$$\leq \gamma(T^{n}(x)) - \gamma(T^{m}(x))$$

 $\lim_{m,n\to\infty} d\left(T^{n}(x),T^{m}(x)\right) = 0.$ Hence

It follows that ${T^n(x)} = {x_n}$ is a Cauchy sequence in X.

Since X is complete there exist $x \in X$ such that $\lim_{n \to \infty} T^n(x) = x$ and by continuity of T we get T(x) = x.

Remark 1.2 In above theorem 1.3 we can obtain an estimate on the rate of convergence of $\{T^n(x)\}\$ by referring back to the inequality

$$\sum_{i=n}^{m-1} d(T^{i}(x), d(T^{i+1}(x)) \leq \gamma(T^{n}(x)) - \gamma(T^{m}(x))$$

This yield $d(T^{n}(x)), d(T^{m}(x)) \le \gamma(T^{n}(x)) - \gamma(T^{m}(x)) \le \gamma(T^{n}(x))$

and if T(x) = x upon letting $m \to \infty$ we get $d(T^{n}(x), x) \le \gamma(T^{n}(x))$.

Remark 1.3 If $T: X \to X$ is a contraction mapping then it is continuous and satisfies equation (I) inequality in above theorem 1.3.

Since T is a contraction mapping then

$$d(T(x), T^{2}(x)) \leq \alpha d(x, T(x))$$
, for all $x \in X$

Adding d(x, T(x)) to both the sides of the above inequality yields

$$\therefore d(x,T(x)) + d(T(x),T^{2}(x)) \leq d(x,T(x)) + \alpha d(x,T(x))$$

is equivalent to

$$d(x, T(x)) - \alpha d(x, T(x)) \le d(x, T(x)) - d(T(x), T^{2}(x))$$

 $d(x,T(x)) \le \frac{1}{1-\alpha} [d(x,T(x)) - d(T(x),T^{2}(x))]$

Then

Hence define the function $\gamma : X \to R$ by

$$\gamma(x) \leq \frac{1}{1-\alpha} d(x, T(x)), \text{ for all } x \in X.$$

This gives us the basic inequality

$$d(x, T(x)) \le \gamma(x) - \gamma(T(x))$$
 for all $x \in X$

2. Single-valued Mapping

In this paper *S* be the complete metric space with the metric *d*, let *R* be the set of all real numbers, *N* be the set of positive integer and B(S) be the set of all nonempty bounded subset of *S*, CB(S) be the set of all nonempty bounded closed subset of *S*, CL(S) is the class of nonempty closed subset of *S* and K(S) be the set of all nonempty compact subset of *S* respectively. For any *P*, *Q* belongs to CB(S) then

$$\delta(P,Q) = \sup \{ d(x,Q) : x \in P \}$$
 and $D(P,Q) = \inf \{ d(x,Q) : x \in P \}$

A single point *x* belongs to *P* we can write $\delta(P,Q) = \delta(x,Q)$, and if $P = \{x\}$ and $Q = \{y\}$ then we write $\delta(P,Q) = d(x,y)$. Let *CB*(*S*) be the class of all nonempty bounded closed subset of *S* and *H* is the Hausdorff metric with respect to δ then

$$H(P,Q) = \max \left\{ \sup_{m \in P} \delta(m,P), \sup_{n \in Q} \delta(n,Q) \right\} \text{ where } \delta(m,P) = \inf_{n \in P} \delta(m,n).$$

Then the function H is a metric on CB(S) and is called Hausdorff metric. And the pair (CB(S), H) is called generalized Hausdroff distance induced by d.

Example 2.1 Let P = (1,2) and Q = (2,3) where S = R be the set of all real numbers then

$$\delta(P,Q) = \sup_{m \in Q} \delta(m,P) = 1$$

$$\delta(Q,P) = \sup_{n \in P} \delta(n,Q) = 1$$

$$H(P,Q) = \max \{\delta(P,Q), \delta(Q,P)\} = 1.$$

Where the set distance δ is not symmetric.

In 1989 Kaneko and Sessa ^[12] introduced the concept on compatible mapping of single valued and multi-valued mapping.

Definition 2.1 ^[04] Two mappings $f: S \to S$ and $T: S \to CB(S)$ in metric space $\begin{pmatrix} S, d \end{pmatrix}$ are said to be compatible if fT_x belongs to CB(S) for all $x \in S$, and $\lim_{n \to \infty} H(Tfx_n, fTx_n) = 0$ and $\lim_{n \to \infty} Tx_n = P$, for some $P \in CB(S)$, where $\{X_n\}$ is a $\lim_{n \to \infty} fx_n = l$ for some $l \in S$.

Definition 2.2 ^[04] A single valued mapping $f: S \to S$ and a multi-valued mapping $T: S \to CB(S)$ in metric space (S, d) are said to be weakly compatible if they commute at their coincidence points i.e. $fT_x = Tf_x$ where $f_x \in T_s$, we know that compatible mappings are weakly compatible but converse is not true.

Example 2.2 Let the two single valued mappings $f, g: S \to S$ in the set $S = [1, \infty)$ defined by $f_x = \frac{x}{7}$ and $g_x = 7x$ for all

 $x \in S$. And let the sequence $\{X_n\}$ in S is defined by $x_n = \frac{1}{n}$ for each $n \ge 1$ then $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = f(0)$. Hence the mapping f and g has satisfies the common limit in the range with g.

Definition 2.3 In a metric space (S, d) two mappings $f, g : S \to S$ are said to be occasionally weakly compatible *(OWC)* if there exist a point *t* in *S* such that ft = gt and fgt = gft.

Definition 2.4 ^[07] A single-valued mapping $f: S \to S$ and a multi-valued mapping $T: S \to CB(S)$ are said to be occasionally weakly compatible if $fTx \subset Tfx$ for some *x* in *S* and *fx* belongs *Tx*.

Definition 2.5 Let $f, g: S \to S$ be a single-valued mapping and $T, U: S \to CB(S)$ be multi-valued mappings then 1. A point x in S is said to be coincidence point of f and T if fx belongs to Tx.

2. A point *x* in *S* is called common fixed point of *f*, *g*, *T* and *U* if x = fx = gx belongs Tx and x = fx = gx belongs to Ux.

Theorem 2.1 Let $f, g: S \to S$ be a single-valued mapping and $T, U: S \to CB(S)$ be the multi-valued mappings satisfying the following conditions

$$\delta'(Tx, Uy) \le \xi \left[\max \left\{ d'(fx, gy), \frac{d'(fx, Tx)d'(gy, Uy)}{1 + d'(fx, gy)}, \frac{d'(fx, Uy)d'(gy, Tx)}{1 + d'(fx, gy)} \right\} \right]$$

for all $x, y \in S$, $r \ge 1$ and $\xi : [0, \infty) \to [0, \infty)$, is a function such that and $\xi(0) = 0$ and $\xi(t) < t$ for all t > 0. ii) The pairs (T, f) and (U, g) are occasionally weakly compatible then f, g, t and U have a unique common fixed point in S.

Proof. Let $x, y \in S$ and the pairs (T, f) and (U, g) satisfy occasionally weakly compatible (*OWC*) property such that $f_x \in Tx$, $fTx \subset Tfx$ and $gUy \subset Ugy$, which implies that $ffx \in Tfx$ and $ggx \in Ugx$.

Then we have to prove that fx = gy. Now if $fx \neq gy$ then by using (i) condition we have

$$\delta^{r}(Tx,Uy) \leq \xi \left[\max \left\{ d^{r}(fx,gy), \frac{d^{r}(fx,Tx)d^{r}(gy,Uy)}{1+d^{r}(fx,gy)}, \frac{d^{r}(fx,Uy)d^{r}(gy,Tx)}{1+d^{r}(fx,gy)} \right\} \right]$$
$$= \xi \left[\max \left\{ d^{r}(fx,gy), \frac{d^{r}(fx,Uy)d^{r}(gy,Tx)}{1+d^{r}(fx,gy)} \right\} \right]$$

Since $f_x \in Tx$ and $gy \in Uy$ then we have

$$\frac{d^{r}(fx,Uy)d^{r}(gy,Tx)}{1+d^{r}(fx,gy)} \leq \frac{d^{r}(fx,gy)d^{r}(gy,fx)}{1+d^{r}(fx,gy)} < d^{r}(fx,gy)$$

$$\delta^{r}(Tx,Uy) \leq \xi \left(d^{r}(fx,gy)\right)$$

and

Hence by the property of ξ that we have

$$d^{r}(fx,gy) \leq \delta^{r}(Tx,Uy) \leq \xi \left(d^{r}(fx,gy)\right) < d^{r}(fx,gy)$$

Which is contradiction to our assumption and hence fx = gy. Then we have to prove fx is a fixed point of f. Assume that $ffx \neq fx$ by using (i) condition, we have

$$d^{r}(ffx, fx) = d^{r}(ffx, gy) \leq \delta^{r}(Tfx, Uy)$$

$$\leq \xi \left[\max \left\{ d^{r}(ffx, gy), \frac{d^{r}(ffx, Tfx)d^{r}(gy, Uy)}{1 + d^{r}(fTx, gy)}, \frac{d^{r}(ffx, Uy)d^{r}(gy, Tfx)}{1 + d^{r}(fTx, gy)} \right\} \right]$$

Since $ffx \in Tfx$ and $gy \in Ty$ then

$$\frac{d^{r}(ffx,Uy)d^{r}(gy,Tfx)}{1+d^{r}(fTx,gy)} \leq d^{r}(ffx,Uy) < d^{r}(ffx,gy)$$

$$\therefore \delta^{r}(Tfx,Uy) \leq \xi \left(d^{r}(ffx,gy)\right)$$

Then from the property of ξ that

$$d^{r}(ffx, fx) = d^{r}(ffx, gy) \le \delta^{r}(Tfx, Uy)$$
$$\le \xi \left(d^{r}(ffx, gy)\right) < d^{r}(ffx, gy)$$
$$= d^{r}(ffx, fx)$$

Which is a contradiction, hence ffx = fx.

Similarly we can prove fx = gfx = ffx then we have $fx = ffx \in Tfx$ and $fx = gfx = ggy \in Ugy = Ufx$. Therefore fx is a common fixed point of f, g, T and U moreover by the (i) condition we get

$$\delta'(Tfx, Ufx) \leq \xi \left[\max \left\{ d'(ffx, gfx), \frac{d'(ffx, Tfx)d'(gfx, Ufx)}{1 + d'(ffx, gfx)}, \frac{d'(ffx, Ufx)d'(gfx, Tfx)}{1 + d'(ffx, gfx)} \right\} \right]$$
$$= \xi \left[\max \left\{ 0, 0, 0 \right\} \right] = 0$$

 $\therefore Tfx = Ufx = \{fx\}$

then assume that $l \neq m$ is another common fixed point of f, g, T and U, hence from condition (i) we get

$$d^{r}(m,l) = \delta^{r}(Tm,Ul) \leq \xi \left\{ \max \left\{ d^{r}(fm,gl), \frac{d^{r}(fm,Tm)d^{r}(gl,Ul)}{1+d^{r}(fm,gl)}, \frac{d^{r}(fm,Ul)d^{r}(gl,Tm)}{1+d^{r}(fm,gl)} \right\} \right\}$$
$$= \xi \left\{ \max \left\{ d^{r}(m,l), 0, \frac{d^{r}(m,l)d^{r}(l,m)}{1+d^{r}(m,l)} \right\} \right\},$$
$$= \xi \left(d^{r}(m,l) \right) < d^{r}(m,l).$$

Which is a contradiction, hence the common fixed point *m* is unique.

Corollary 2.1 Let $f: S \to S$ be a single-valued mapping and $T: S \to CB(S)$ be a multi-valued mapping in a metric space (S, d) satisfying the following conditions

$$\delta'(Tx,Ty) \le \xi \left[\max \left\{ d'(fx,fy), \frac{d'(fx,Tx)d'(fy,Ty)}{1+d'(fx,fy)}, \frac{d'(fx,Ty)d'(fy,Sx)}{1+d'(fx,fy)} \right\} \right]$$

for all $x, y \in S$ where $r \ge l$ and $\xi : [0, \infty) \to [0, \infty)$ is a function such that $\xi(0) = 0$ and $\xi(t) < t$ for all t > 0. ii) The pair (T, f) satisfies OWC property then f and T have a unique common fixed point in S. If *T* is a single-valued mapping then above corollary becomes as follows.

Corollary 2.2 Let $f, T: S \to S$ be two single-valued mapping in metric space (S, d) satisfying the following conditions

$$d^{''}(Tx,Ty) \leq \xi \left[\max \left\{ d^{''}(fx,fy), \frac{d^{''}(fx,Tx)d^{''}(fy,Ty)}{1+d^{''}(fx,fy)}, \frac{d^{''}(fx,Ty)d^{''}(fy,Tx)}{1+d^{''}(fx,fy)} \right\} \right]$$

for all $x, y \in S$ where $\xi \ge 1$ and $\xi : [0, \infty) \to [0, \infty)$ is a function such that $\xi(0) = 0$ and $\xi(t) < t$, for all t>0. The pair (T, f) satisfies the OWC property then f and T have a unique common fixed point in S. ii)

Example 2.3 Let $S = [0, \infty)$ be the set of real numbers with the usual metric d(x, y) = |x - y| for all $x, y \in S$ Define two single-valued mapping $f, T: S \to S$ by

$$Tx = \begin{cases} \{4, 0 \le x < 1 \\ x^4, 1 \le x < \infty \end{cases} \quad fx = \begin{cases} 3, 0 \le x < 1 \\ 1 - \frac{1}{x^4} x, 1 \le x < \infty \end{cases}$$
And

Then f(1) = T(1) = 1 and fT(1) = 1 = Tf(1) and so the pair (T, f) satisfies OWC property.

And for some *J* belongs to [0,1) if we define a function $\xi(t) = Jt$ for all $t \in [0,\infty)$ then all conditions in above corollary are satisfied and further the point 1 is a unique common fixed point of T and f.

3. Conclusion

i)

In this paper we generalized contracticitive condition and single valued mapping theorem in complete metric space.

4. Acknowledgements

The authors are very grateful and wish to thank to an anonymous referee for their insightful reading the manuscript & valuable helpful suggestions which led to an improved preparation of the manuscript.

5. References

- 1. Edelstein M. An Extensi, on of Banach Contraction Principle, Proc. Amer. Math. Soc., 1960; 12:7-10.
- 2. Boyd DW, Wong JSW. On Nonlinear Contractions, Proc. Amer. Math. Soc. 1969; 20:458-464.
- 3. Suhas S Patil, Dolhare UP. A Note on Development of Metric Fixed Point Theory, Int. Jou. Adv. Reserch, 2016; 4(8):1729-1734.
- Suhas Patil, Dolhare UP. Some Common Fixed Point Theorems in Metric Space via Weakly Commuting Mapping, Int. Jou. 4. of Applied and Pure Science and Agriculture. 2016; 2(10):32-38.
- 5. Pant RP. Note Common Fixed Point Theorems for Contractive Maps, Jou. Math. Anal. and Appl. 1965, 440-446.
- Suhas Patil, Uttam Dolhare. Random Fixed Point Theorems for Contraction Mappings in Metric Space, Int. Jou. of Sci. & 6. Res. 2016; 5(10):1172-1176.
- Suhas S Patil, Uttam Dolhare. Random Fixed Point Theorems for Multi-Valued Contraction Mapping In Complete Metric 7. Space, Int. Jou. of Current Research. 2016; 12:42856-42860.
- Suhas S Patil, Dolhare UP. Random Fixed Point Theorems for Compatible Mappings in Metric Space, International Journal 8. of Mathematical Archive, 2017; 8(6):71-75.
- Pant RP. Common fixed points of contractive maps. J. math Anal. Appl. 1998; 226:251-258. 9.
- 10. Jungck G. Commuting mappings and fixed point, American Math Monthly, 1976; 83:261-263.
- 11. Suhas S Patil, Uttam Prallahadrao Dolhare, Random Fixed Point Theorems for Multi-Valued Contraction Mapping In Complete Metric Space, Int. Jou. of Current Research. 2016; 12:42856-42860.
- 12. Salvatore Sessa. On a Weak Commutativity Condition of Mappings in Fixed Point Considerations, Publ. Inst. Math. 1982; 32:149-153.