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Generalized contractive conditions and single valued 

mapping in complete metric space 

 
Suhas S Patil and UP Dolhare 

 
Abstract 

There are great number of generalizations of well-known Banach contraction mapping principle, M. 

Edelstein [01] was extended and defined contractive mapping. A contractive mapping is always 

continuous and which has a unique fixed point. M. Edelstein [01] proved that if T is a contractive 

mapping on a compact metric space ( , )X d  to itself then there exists a unique fixed point of T. 

 

Keywords: Contraction mapping, contractive mapping, cauchy sequence and single-valued mapping 

 

1. Introduction 

In functional analysis the fixed point theory having incredible research field in applied 

mathematics. Also it has various applications to non-linear Sciences, Stefan Banach had 

proved one of the most famous result of fixed point theorem, which is the initial path in this 

direction of metric fixed point theory. A common fixed point theorem in metric space 

generally involves conditions of continuity, commutativity and contraction conditions with 

completeness. In 1976 G. Jungck [10] was the first mathematician who generalized the Banach 

contraction theorem by using commuting mappings and it has open problem that a pair of 

commuting and continuous self mapping in the interval [0,1] which has not a common fixed 

point. 

There are great numbers of generalizations of well-known Banach contraction mapping 

principle. M. Edelstein [01] extended and defined contractive mapping such as “A mapping T of 

a metric space 
( , )X d

 into itself is said to be contractive if  

 

( ( ) , ( )) ( , )d T x T y d x y
, for 

x y
 and 

, .x y X
 

 

A contraction mapping is always continuous and which has a unique fixed point. M. Edelstein 

[01] proved that if T is a contractive mapping on a compact metric space 
( , )X d

 to itself then 

there exists a unique fixed point of T. 

Now we consider some important generalization of Banach contraction mapping principle. In 

1969 D. W. Boyd and J. S. W. Wong [02] obtain the following generalization of contraction 

mapping theorem. 

 

Definition 1.1 

A function 
: R R

 


is said to be upper semi continuous from the right if 
0

n
r r




, 

lim su p ( ) ( )
n

n

r r 
 

 
. 

 

Theorem 1.1 

In a complete metric space 
( , )X d

 if :T X X  satisfied 

 
( ( ), ( )) [ ( , )],d T x T y d x y

 for all 
,x y X

.
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If 
: [0 , )R  

 be upper semi-continuous from the right such that
( ) [0 , )t t 

, 0t   then T has a unique fixed point in X 

and 
{ ( )}

n
T x

 converges to fixed point for all x X . 

 

Proof: For any fixed point i.e. x X , let 
( )

n

n
x T x

 for any n= 1,2,3…….  and 
1

1
( , ) ( ( ) , ( ) )

n n

n n n
a d x x d T x T x




 

.  

Here we show that an is convergent. Assume that an >0 for all n > 0 then for all n > 1. 

 

     

1

1
[ ( ) , ( ) ] [ ( ) , ( ) ]

n n

n n n
a d T x T x d T x T x




 

 

    
 1 1

( , ) ( )
n n n

d x x a 
 

 
 

    1n
a




.  

 

Hence the sequence 
{ }

n
a

 is monotonically decreasing and bounded below, so it is convergent. 

 

Let 
lim

n
n

a a
 


 we show that a=0, if a > 0 then 1

( )
n n

a a



. 

 

Then by the upper semi continuity from the right of the function   we get 
( )a a

 which is a contradiction with the property 

of  . Thus a = 0 and 
0

n
a 

 as n   . 

We say that 
{ }

n
x

 is a Cauchy sequence but assume that the sequence 
{ }

n
x

 is not a Cauchy sequence then there exist 0   

such that for any k N  there exist k k
m n k 

 such that  

 

   
( , )

m k n k
d x x 

     …..(1)  

 

Let us assume that for each k, the smallest number k k
m n

 for each equation (1) holds
( , )

k m k n k
a d x x

. 

 

Since 
1

lim ( , ) lim 0
n n n

n n

d x x a


   

 
 there exist k0 such that 1

( , )
k k

d x x 



 for all 0

k k
 for each k we have 

  

  1 1
( , ) ( , ) ( , )

m k n k m k m k m k n k
d x x d x x d x x

 
  

 

   1 1
( , ) ( , ) .

m k m k k k
d x x d x x 

 
   

 
 

It proves that 
lim ( , ) lim

m k n k k
k k

d x x a 
   

 
. 

 

On the other hand we have, 

 

  1 1 1 1
( , ) ( , ) ( , ) ( , )

m k n k m k m k m k n k n k n k
d x x d x x d x x d x x

   
  

 

    
( ( , ) )

m k m k n k n k
a d x x a  

 

    
2 ( ( , ) ) .

k m k n k
a d x x 

 
 

As k   we obtain the following condition  

 

  
1

lim ( , ) lim (2 ( , ) ( )
m k n k k m k n k

n n

d x x a x x   


   

   
. 

 

Thus 
( )  

 this is contradiction. Hence 
{ ( )} { }

n

n
T x x

 is a Cauchy sequence. Since 
{ ( )}

n
T x

 is a Cauchy sequence and 

X is complete. 

 

Therefore 
lim ( )

n

n

T x x
 


 for x X . Since T is continuous hence

( )T x x
. 
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Remark 1.1 In above theorem 1.1 if we replace the condition 
( )t t 

 by the condition 0 0
( )t t 

 for at least one value to 0
t

 

then T may not have a fixed point. 

 

Example 1.1 Let 
( , 1] [1, )X     

 be a metric space with the metric X and let 

 

   

1

1
( 1) , . 1

2
( )

1
( 1) , . 1

2

x i f x

T x

x i f x

 
 

  
  

   
    and 2 1

( ) ( )T x T x 
, for all x X . 

 

Hence T1 and T2 satisfies the equation (1) 

 

    

1
, . 2

2
( )

1
( 1) , . 2

2

t i f t

t

t i f t



 


  
  

  
   . 

 

Hence the function   satisfies all the conditions in above theorem except
( 2 ) 2 

. And we observe that T1 has two fixed points 

-1 and 1, while T2 has no fixed points. 

In the following result the continuity condition on  is replaced with another suitable condition. 

 

Theorem 1.2 

In a complete metric space 
( , )X d

 let :T X X be the mapping has satisfies 

 

    
( ( ), ( )) [ ( , )]d T x T y d x y

, for all 
,x y X

. 

where 
: (0 , ) (0 , )   

be monotone non-decreasing function and satisfies 
lim ( ) 0

n

n

t
 


 for all t > 0 then it has a unique 

fixed point x and  

 

  
lim ( ( ), ) 0

n

n

d T x x
 


 for all x X . 

 

Proof. Let 
( )

n

n
x T x

 for 
1, 2 , 3 .......n  

 for any x X then 1
( )x T x x 

 otherwise x would be a fixed point of T 

then  

  

1 1
( ( ) , ( ) ) ( ( ) , ( ) )

n n n n
d T x T x T x T x

 


 

     
2 2 1

( ( ( ) , ( ) ))
n n

d T x T x
 


 

     ..………………………. 

     1
( ( ) , ( ) ) ( ( , ) )

n n
d x T x d x x  

. 

Hence  

  

1

1
0 lim ( , ) lim ( ( ), ( ))

n n

n n
n n

d x x d T x T x



   

 
 

   
1

lim [ ( , )] 0
n

n

d x x
 

 
 

 

Thus   
1

lim ( , ) 0 .
n n

n

d x x


 


 

 

We show that 
{ }

n
x

 is a Cauchy sequence. Since 
( ) 0

n
t 

 for all t > 0, 
( )  

 for any 0  . 

 

Since 
1

lim ( , ) 0
n n

n

d x x


 


 for any 0  , then we choose n such that  

  1
( , ) ( )

n n
d x x   


 

. 
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Let 
( ) { : ( , ) }

n n
P x x X d x x


  
 if 

( )
n

z P x



 then 

( , )
n

d z x 
 and  

  
( ( ) , ) ( ( ) , ( )) ( ( ) , )

n n n n
d T z x d T z T x d T x x 

 

    1
( ( , ) ) ( , )

n n n
d z x d x x


 

 as 1
( )

n n
T x x




 

    
( ) ( ( ))        

. 

 

 

Therefore 
( ) ( )

n
T z P x




 and 
: ( ) ( )

n n
T P x P x

 


. 

It follows that 
( , )

m n
d x x 

 for all m n  and hence 
{ }

n
x

 is a Cauchy sequence. Which is the conclusion of our proof 

follows as in above theorem 1.4.1. 

  Now in the following theorem we present a different kind of principle in which the contractive condition is imposed only 

at the first step. 

 

Theorem 1.3 

Let 
( , )X d

 is a complete metric space and :T X X  be a continuous mapping such that for some function 
: X R 

 the 

following condition holds 

  

   
( , ( )) ( ) ( ( ))d x T x x T x  

, for x X  . …..(I) 

 

then 
{ ( )}

n
T x

 converges to a fixed point of T for all x X . 

 

Proof. For any x X  let 
( )

n

n
x T x

 for 
1, 2 , 3 .......n  

then by the inequality (I) we have 
0 ( ) ( ( ))x T x  

 if and 

only if 
( ( ) ( )T x x 

 for all x X . 

 

   

1

1
( ) ( ( ) ) ( ( ( ) ) )

n n

n
x T x T T x  




  

, 

     
( ( ) ( ) )

n

n
T x x  

. 

 

Thus 
{ ( ( )} { ( )}

n

n
T x x 

 is monotonically decreasing and bounded below.  

 

Hence 
lim ( ( )) 0

n

n

T x r
 

 
, by the triangle inequality if 

, &m n N m n 
 then  

 
1 1 2 1

( ( ) , ( ) ) ( ( ) , ( ) ) ( ( ) , ( ) ) ... . ( ( ) , ( ) )
n m n n n n m m

d T x T x d T x T x d T x T x d T x T x
   

   

 
1 1 2 1

( ( )) ( ( )) ( ( )) ( ( )) ... . ( ( )) ( ( ))
n n n n m m

T x T x T x T x T x T x     
   

      
  

 
( ( )) ( ( ))

n m
T x T x  

. 

 

Hence ,

lim ( ( ) , ( )) 0 .
n m

m n

d T x T x
 



 

 

It follows that 
{ ( )} { }

n

n
T x x

 is a Cauchy sequence in X.  

 

Since X is complete there exist x X  such that 
lim ( )

n

n

T x x
 


 and by continuity of T we get

( )T x x
. 

Remark 1.2 In above theorem 1.3 we can obtain an estimate on the rate of convergence of 
{ ( )}

n
T x

 by referring back to the 

inequality  

 

  

1

1
( ( ) , ( ( ) ) ( ( ) ) ( ( ) )

m

i i n m

i n

d T x d T x T x T x 







 
 

 

This yield 
( ( )) , ( ( )) ( ( )) ( ( )) ( ( ))

n m n m n
d T x d T x T x T x T x    
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 and if 
( )T x x

 upon letting m    we get 
( ( ) , ) ( ( ))

n n
d T x x T x

.  

 

Remark 1.3 If :T X X  is a contraction mapping then it is continuous and satisfies equation (I) inequality in above theorem 

1.3. 

Since T is a contraction mapping then  

 

  

2
( ( ) , ( )) ( , ( ))d T x T x d x T x

, for all x X .  

 

Adding 
( , ( ))d x T x

 to both the sides of the above inequality yields  

 

  

2
( , ( ) ) ( ( ) , ( ) ) ( , ( ) ) ( , ( ) )d x T x d T x T x d x T x d x T x  

 
 

is equivalent to  

 

  

2
( , ( )) ( , ( )) ( , ( )) ( ( ) , ( ))d x T x d x T x d x T x d T x T x  

. 

 

Then  

21
( , ( )) [ ( , ( )) ( ( ) , ( )]

1
d x T x d x T x d T x T x


 

 . 

 

Hence define the function 
: X R 

 by  

  

   

1
( ) ( , ( )

1
x d x T x




 , for all x X . 

 

This gives us the basic inequality 

 

  
( , ( )) ( ) ( ( ))d x T x x T x  

, for all x X . 

 

2. Single-valued Mapping  

In this paper S be the complete metric space with the metric d, let R be the set of all real numbers, N be the set of positive integer 

and B(S) be the set of all nonempty bounded subset of S, CB(S) be the set of all nonempty bounded closed subset of S, CL(S) is the 

class of nonempty closed subset of S and K(S) be the set of all nonempty compact subset of S respectively. 

For any P, Q belongs to CB(S) then 

 

  
( , ) su p { ( , ) : }P Q d x Q x P  

 and 
( , ) in f{ ( , ) : }D P Q d x Q x P 

 

 

A single point x belongs to P we can write
( , ) ( , )P Q x Q 

, and if P={x} and Q= {y} then we write
( , ) ( , )P Q d x y 

. 

Let CB(S) be the class of all nonempty bounded closed subset of S and H is the Hausdorff metric with respect to δ then  

 

( , ) m a x s u p ( , ) , s u p ( , )
m P n Q

H P Q m P n Q 
 

 
  

  where 
( , ) in f ( , ) .

n P

m P m n 



 

 

Then the function H is a metric on CB(S) and is called Hausdorff metric. And the pair (CB(S), H) is called generalized Hausdroff 

distance induced by d. 

 

Example 2.1 Let P = (1,2) and Q = (2,3) where S = R be the set of all real numbers then 

 

   
 

( , ) s u p ( , ) 1

( , ) s u p ( , ) 1

( , ) m a x ( , ) , ( , ) 1 .

m Q

n P

P Q m P

Q P n Q

H P Q P Q Q P

 

 

 





 

 

 
 

 

Where the set distance δ is not symmetric. 
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In 1989 Kaneko and Sessa [12] introduced the concept on compatible mapping of single valued and multi-valued mapping. 

 

Definition 2.1 [04] Two mappings 
:  f S S

 and 
 :  T S C B S

 in metric space 
 ,S d

 are said to be compatible if fTx 

belongs to CB(S) for all x S , and 
lim ( , ) 0

n n
n

H T fx fT x
 


 and 

lim
n

n

T x P
 


, for some 

 P C B S
, where {Xn} is a 

sequence in S and 
lim

n
n

fx l
 


 for some l S . 

 

Definition 2.2 [04] A single valued mapping 
:  f S S

 and a multi-valued mapping 
 :  T S C B S

in metric space 
 ,S d

are 

said to be weakly compatible if they commute at their coincidence points i.e. fTx = Tfx where x s
f T

, we know that compatible 

mappings are weakly compatible but converse is not true. 

 

Example 2.2 Let the two single valued mappings 
, :  f g S S

 in the set S= [1, ∞) defined by 7
x

f
x



 and 
7

x
g x

 for all 

x S . And let the sequence {Xn} in S is defined by 

1

n
x

n


 for each 1n   then 
lim lim (0 )

n n
n n

fx g x f
   

 
. Hence the 

mapping f and g has satisfies the common limit in the range with g. 

 

Definition 2.3 In a metric space 
 ,S d

 two mappings 
, :  f g S S

 are said to be occasionally weakly compatible (OWC) if 

there exist a point t in S such that 
ft g t

 and 
fg t g ft

. 

 

Definition 2.4 [07] A single-valued mapping 
:  f S S

 and a multi-valued mapping 
 :  T S C B S

are said to be occasionally 

weakly compatible if 
fT x T fx

 for some x in S and fx belongs Tx. 

 

Definition 2.5 Let 
, :  f g S S

 be a single-valued mapping and 
 , :  T U S C B S

 be multi-valued mappings then  

1. A point x in S is said to be coincidence point of f and T if fx  

belongs to Tx. 

2. A point x in S is called common fixed point of f, g, T and U if  

x = fx = gx belongs Tx and x = fx = gx belongs to Ux. 

 

Theorem 2.1 Let 
, :  f g S S

be a single-valued mapping and 
 , :  T U S C B S

be the multi-valued mappings satisfying 

the following conditions 

 

i) 

( , ) ( , ) ( , ) ( , )
( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r

r r

d fx T x d g y U y d fx U y d g y T x
T x U y d fx g y

d fx g y d fx g y
 

  
   

     

 

for all 
,x y S

, 1r   and 
: [0 , ) [0 , )   

, is a function such that and 
(0 ) 0 

 and 
( )t t 

 for all t >0. 

ii) The pairs (T, f) and (U, g) are occasionally weakly compatible then f, g, t and U have a unique common fixed point in S. 

 

Proof. Let 
,   x y S

and the pairs (T, f) and (U, g) satisfy occasionally weakly compatible (OWC) property such that x
f T x

,

fT x T fx
 and 

g U y U g y
, which implies that 

f fx T fx
 and

g g x U g x
. 

Then we have to prove that
  fx g y

. Now if 
fx g y

 then by using (i) condition we have  

 

( , ) ( , ) ( , ) ( , )
( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r

r r

d fx T x d g y U y d fx U y d g y T x
T x U y d fx g y

d fx g y d fx g y
 

  
   

     

    

( , ) ( , )
m a x ( , ) ,

1 ( , )

r r

r

r

d fx U y d g y T x
d fx g y

d fx g y

  

   
   . 

Since x
f T x

 and 
g y U y

 then we have  
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( , ) ( , ) ( , ) ( , )
( , )

1 ( , ) 1 ( , )

r r r r

r

r r

d fx U y d g y T x d fx g y d g y fx
d fx g y

d fx g y d fx g y
 

 
 

and 
 ( , ) ( , )

r r
T x U y d fx g y 

. 

 

Hence by the property of 


 that we have  

 

  
 ( , ) ( , ) ( , ) ( , )

r r r r
d fx g y T x U y d fx g y d fx g y   

. 

 

Which is contradiction to our assumption and hence fx = gy. Then we have to prove fx is a fixed point of f.  

Assume that 
ffx fx

 by using (i) condition, we have  

 

( , ) ( , ) ( , )
r r r

d ffx fx d ffx g y T fx U y 
 

( , ) ( , ) ( , ) ( , )
m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r

r r

d ffx T fx d g y U y d ffx U y d g y T fx
d ffx g y

d fT x g y d fT x g y

  

   
    . 

 

Since 
f fx T fx

 and 
g y T y

 then  

 

   

( , ) ( , )
( , ) ( , )

1 ( , )

r r

r r

r

d ffx U y d g y T fx
d f fx U y d ffx g y

d fT x g y
 


 

   
 ( , ) ( , )

r r
T fx U y d ffx g y  

. 

Then from the property of 


 that  

 

  
( , ) ( , ) ( , )

r r r
d ffx fx d ffx g y T fx U y 

 

   
 ( , ) ( , )

r r
d ffx g y d ffx g y 

 

    
( , )

r
d ffx fx

. 

Which is a contradiction, hence
  ffx fx

. 

Similarly we can prove 
   fx g fx ffx 

 then we have 
 fx ffx T fx 

 and 
 fx g fx g g y U g y U fx   

. Therefore fx is 

a common fixed point of f, g, T and U moreover by the (i) condition we get 

 

( , ) ( , ) ( , ) ( , )
( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r

r r

d ffx T fx d g fx U fx d ffx U fx d g fx T fx
T fx U fx d ffx g fx

d ffx g fx d ffx g fx
 

  
   

     

     
 m ax 0 , 0 , 0 0     

 

  
 T fx U fx fx 

. 

 

then assume that l m  is another common fixed point of f, g, T and U, hence from condition (i) we get  

 

 

( , ) ( , ) ( , ) ( , )
( , ) ( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r r

r r

d fm T m d g l U l d fm U l d g l T m
d m l T m U l d fm g l

d fm g l d fm g l
 

  
    

     

    
 

( , ) ( , )
m a x ( , ) , 0 , ,

1 ( , )

( , ) ( , ) .

r r

r

r

r r

d m l d l m
d m l

d m l

d m l d m l





  
   

  

 
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Which is a contradiction, hence the common fixed point m is unique. 

 

Corollary 2.1 Let 
:  f S S

 be a single-valued mapping and 
 :  T S C B S

 be a multi-valued mapping in a metric space 

 ,S d
 satisfying the following conditions 

 

i) 

( , ) ( , ) ( , ) ( , )
( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r

r r

d fx T x d fy T y d fx T y d fy S x
T x T y d fx fy

d fx fy d fx fy
 

  
   

     

for all 
,x y S

 where r ≥ 1 and 
: [0 , ) [0 , )   

 is a function such that 
(0 ) 0 

 and 
( )t t 

 for all t > 0. 

ii) The pair (T, f) satisfies OWC property then f and T have a unique common fixed point in S.  

If T is a single-valued mapping then above corollary becomes as follows. 

 

Corollary 2.2 Let 
, :  f T S S

 be two single-valued mapping in metric space 
 ,S d

 satisfying the following conditions 

 

i) 

( , ) ( , ) ( , ) ( , )
( , ) m a x ( , ) , ,

1 ( , ) 1 ( , )

r r r r

r r

r r

d fx T x d fy T y d fx T y d fy T x
d T x T y d fx fy

d fx fy d fx fy

  

   
      

for all 
,x y S

 where 
1 

 and 
: [0 , ) [0 , )   

 is a function such that 
(0 ) 0 

 and 
( )t t 

, for all t >0. 

ii)  The pair (T, f) satisfies the OWC property then f and T have a unique common fixed point in S. 

 

Example 2.3 Let S= [0, ∞) be the set of real numbers with the usual metric 
 ,d x y x y 

 for all 
,x y S

.  

Define two single-valued mapping 
, :  f T S S

 by  

 

   



4

4 , 0 1

,1

x
T x

x x

    
  

      And 
4

3, 0 1

1
1 ,1

x

fx
x x

x

  
 

  
    

  . 

 

Then f(1) =T(1) =1 and fT(1) =1 =Tf(1) and so the pair (T, f) satisfies OWC property.  

And for some J belongs to [0,1) if we define a function 
( )t J t 

 for all 
 0,t  

 then all conditions in above corollary are 

satisfied and further the point 1 is a unique common fixed point of T and f. 

 

3. Conclusion  
In this paper we generalized contractictive condition and single valued mapping theorem in complete metric space.  
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