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PREFACE

This book is intended as a one-year course for students who have completed an
ordinary sequence of courses in elementary calculus. It presents in rigorous fashion basic
material on the fundamental concepts and tools of analysis—functions, limits, continu-
ity, derivatives and integrals, sequences, and series. Most of the difficult points usually
glossed over in elementary courses are dealt with in detail, as well as many more
advanced topics designed to give a good background for (and, hopefully, a taste of)
modern analysis and topology. In particular, there are treatments of metric spaces and
Lebesgue integration, topics that are often reserved for more advanced courses. Also
included are many smaller but interesting topics not usually presented in courses at this
level; these topics include Baire category and discontinuous functions, summability of
series, the Weierstrass theorem on approximation of continuous functions by poly-
nomials, and a proof of the standard existence theorem for differential equations from
the point of view of fixed-point theory.

The book is written at the same level as texts for traditional “advanced calculus”
courses, but does not consider topics in “several variables.” Material on differentials and
vector calculus, in our opinion, can be understood best from the point of view of modern
differential geometry and belong in a separate course.

REMARKS ON THE SECOND EDITION

Many changes in, additions to, and some deletions from the first edition have been
made in accordance with thoughtful criticism from many colleagues at large and small
institutions. .

A major feature of this new edition is the addition of sections called “Notes and
Additional Exercises,” which include a variety of material. There are famous theorems
related to the material in the body of the text—for example, the Schréder-Bernstein
theorem from set theory, the Tietze extension theorem from topology, and Stone’s
generalization of the Weierstrass approximation theorem. The proofs are given in outline
only, with a great deal left to the student as exercises. In these new sections there are also
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vi PREFACE

miscellaneous exercises (many of which are quite challenging) and an occasional histori-
cal note. An instructor’s solutions manual for the problems in the new material can be
obtained from the author.

I also added an appendix that contains an axiomatic treatment of the real number
system. This was a compromise between no treatment at all in the first edition and a
lengthy development from basic principles that I think would retard the reader’s progress
into the core of the book. All the assumptions about the real numbers and the necessary
results that can be derived from these assumptions are carefully presented.

There are a number of pictorial illustrations—also a departure from the first edition—
and new exercises in many of the chapters, and new proofs.

Richard R. Goldberg
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INTRODUCTION

ASSUMPTIONS
AND NOTATIONS

A. The book does not begin with an extended development of the real numbers.
However, the reader who wishes to proceed in strictly logical order should first digest the
basic definitions and theorems about sets and functions in Sections 1.1 through 1.3, and
then turn to the Appendix for the algebra and order axioms of the reals and the
theorems on arithmetic and inequalities that are derived from those axioms. After the
Appendix the reader should go to Section 1.7 where the least upper bound axiom is
presented. At this point the reader will have seen a careful treatment of all the basic
assumptions about the reals. Anyone choosing this approach may skip now to paragraph
C.

B. There are some who feel, however, that it is preferable at first to be less formal
about the real numbers so that the reader can get to the meat of the book more quickly.
From this point of view it is better to delay reading the Appendix and simply proceed
directly through the main body of the text. For those who wish to take this approach we
mention briefly some facts about the reals.

An integer is a “whole number.” Thus 6,0, — 3 are integers. A rational number is a real
number that can be expressed as a quotient of integers. Thus 3/2 and —9/276 are
rational numbers. Any integer k is thus a rational number since we may write k=k/1.
An irrational number is a real number that is not a rational number. For example, a
solution to the equation x*=2 must be an irrational number.

The reader should have some facility in handling inequalities. He should know that if
x-and y are real numbers and x <y, then —x>—y. Also, if 0<x<y, then 0<1/y
<l/x.

For x >0 we define |x| to be x. For x <0 we define |x| to be — x. Finally we define
|0]=0. Thus for any real numbers x, |x| is the “numerical value” of x. We call |x| the
absolute value of x. By considering various cases according to the sign of x and of y, the
reader should have no difficulty in proving the immensely important results

|x+y| <[x]+]y] : (1
and

lxp|=1x]|»]-



2 INTRODUCTION

If a and b are real numbers, then the geometric interpretation of |a — b| is the distance
from a to b (or from b to a). This interpretation is especially important for the
understanding of the essential ideas in many of the proofs. If a, b, ¢ are real numbers,
the geometric meaning of the inequality

la—b|<|a—c|+]|c—b| (2)

is that the distance from a to b is no greater than the distance from a to ¢ plus the
distance from ¢ to b. This should seem quite reasonable. See if you can prove (2). [Let
x=a—c,y=c—b and use (1)]

C. We assume the truth of laws of exponents such as a**”=a*a” for a>0 and for
rational values of x and y. In Chapter 8 we define a* for any real number x and then

prove the familiar laws of exponents for arbitrary exponents. The notations a'/2 and Va
both mean the positive square root of a. (The existence of a positive square root for any
positive number is presented in exercise 8 of Section 6.2.)

D. Here are some notations. If ¢ and b are real numbers with a < b, we denote by
(a,b) the set of all real numbers x such that a < x < b. By (a, ) we mean the set of all
real x such that x > a. By (— 00,a) we mean the set of all real x with x <a. The set (a,b)
is called a bounded open interval, while (— c,a) and (a, o) are called unbounded open
intervals. The set of all real numbers is sometimes denoted by (— o0, ). Note that we
are not defining the symbol 0.

If a<b, then [a,b] denotes the set of real numbers x such that a < x < b. This set is
called a bounded closed interval. A closed interval may thus contain only one point (if
a=>b). We occasionally need to use “half-open” intervals. For example, [0, 1) denotes the
interval of numbers x such that 0< x < 1.

We do not use the notation (a,b) to denote a point in the plane. As we will see, the
point whose “x-coordinate” is a and whose “y-coordinate” is b will be denoted by
{a,b).

It is often convenient to write in parentheses, to the right of a displayed statement, the
values of the “variable” or “variables” for which the statement is true. For example,

f(x)<7  (0<x<3)

means that the number f(x) is less than 7 for all x in [0, 3].

E. The material in this book is logically independent of courses in elementary
geometry, trigonometry, and calculus. That is, we use no result from these elementary
courses in any definition or in the statement or proof of a theorem unless we have
previously established the result ourselves. Nevertheless, we use freely results and
concepts from elementary calculus to illustrate our definitions and theorems. Thus, for
example, we do not define the sine function until Chapter 8, but we do use familiar
results about the sine function in examples and exercises in earlier chapters.

There are some pictorial illustrations in the text, but not a great many. We believe that
the reader should learn to draw his own pictures as early as possible. Presumably, the
instructor will help with the rough spots in this task.



SETS AND FUNCTIONS

1.1 SETS AND ELEMENTS

By a set we mean a collection of objects of any type whatsoever. The objects in a set
are called its elements or points. Note that we have not really defined the terms set and
element (since we did not define “collection” or “object”); rather, we have taken them as
intuitive notions on which all our other notions will be based. Instead of “set” we
sometimes use one of the following: class, family, aggregate. All these words (in this
book) have the same meaning. We indicate in Section 3.12 something of what is involved
in a more sophisticated approach to sets.

It is often useful to denote a set by putting braces around its elements. For example,
{a,b,c} denotes the set consisting of the three elements a, b, and ¢. With judicious use of
dots we can even illustrate in this way sets with infinitely many elements (whatever that
means—see Section 1.5D). For example, the set of all positive integers may be denoted
by {1,2,3,...}. Another kind of set notation consists of braces around a description of
the set. The first quadrant of the Cartesian plane may thus be denoted {{x.y>|x >0,
y 2 0}—the set of all points {(x,y) such that x is nonnegative and y is nonnegative.
Similarly, [0,1]={x|0< x <1}.

DEFINITION. If b is an element of the set A, we write b€ A. If b is not an element of A,
we write bZ A.

Thus a€{a,b,c} but d Z{a,b,c}. As another illustration, suppose we define a base-
ball team as the set of its players and define the American League to be the set of its
twelve member teams. Then, in the notations we have just introduced,

American League= { A’s, Tigers,..., Rangers},
A’s= {Jackson, Bando,...,Campaneris },
A’s € American League,
JacksonEA’s.
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Note that the elements of the American League are themselves sets, which illustrates the
fact that a set can be an element of another set. Note also that although Jackson plays in
the American League, he is not an element of the American League as we have defined

it. Hence
Jackson & American League.

Exercises 1.1

1. Describe the following sets of real numbers geometrically:

A={x|x<7},
B={x|x|>2},
C={x||x|= 1}.

2. Describe the following sets of points in the plane geometrically:
A={{opy|xt+y2=1),
B= {<x,y>|x <y}
C={{xp)|x+y=2}.
3. Let P be the set of prime integers. Which of the following are true?
(a) 7€ P.
(b) 9eP.
(c) 11&P.
(d) 7,547,193-65,317€ P.
4. Let A={1,2,{3},{4,5}}. Are the following true or false?
(a) 1€4.

(b) 3€4.
How many elements does A have?

1.2 OPERATIONS ON SETS

In grammar-school arithmetic the “elementary operations” of addition, subtraction,
multiplication, and division are used to make new numbers out of old numbers—that is,
to combine two numbers to create a third. In set theory there are also elementary
operations—union, intersection, complementation—which correspond, more or less, to
the arithmetic operations of addition, multiplication, and subtraction.

1.2A. DEFINITION. If A and B are sets, then 4 U B (read “A4 union B” or “the union of
A and B™) is the set of all elements in either A or B (or both). Symbolically,

AUB={x|xEA or xEB}.
Thus if

A={1,2,3}, B={3,4,5}, €))
then AU B=(1,2,3,4,5}.

1.2B. DEFINITION. If A and B are sets, then AN B (read “A intersection B” or “the
intersection of 4 and B”) is the set of all elements in both 4 and B. Symbolically,

ANB={x|x€EA and xEB}.
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Thus if 4, B are as in (1) of Section 1.2A, then 4 1 B={3}. (Note the distinction between
{3} and 3. Since 4 N B is the set whose only element is 3, to be consistent we must write
AN B={3}. This distinction is rarely relevant, and we often ignore it.) See Figure 1.

When A and B are sets with no elements in common, 4 N B has nothing in it at all.
We would still like, however, to call AN B a set. We therefore make the following
definition.

FIGURE 1.

1.2C. perINITION. We define the empry set (denoted by ) as the set which has no
elements.

Thus {1,2} N {3,4} =@. Moreover, for any set 4 we have AUZ=4 and ANT=0
(verify!).

1.2D. pErINITION. If 4 and B are sets, then B— A4 (read “B minus 4”) is the set of all
elements of B which are not elements of 4. Symbolically,
B—A={x|xEB,xZA}.

Thus if 4, B are as in (1) of Section 1.2A, B— A4 ={4,5}. See Figure 2.
There are relations for sets that correspond to the < and > signs in arithmetic. We
now define them.

FIGURE 2.

1.2E. DEFINITION. If every element of the set 4 is an element of the set B, we write
A C B (read “A is contained in B” or “A is included in B”) or B D A (read “B contains
A”). If A C B, we say that 4 is a subset of B. A proper subset of B is a subset A C B such
that 4 # B. (See Figure 3.)
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FIGURE 3.

Thus if
A={1,6,7}, 'B={1,3,6,7,8}, C={2,3,4,5,...,100}, Q)]

then 4 C B but B Z C (even though C has 99 elements and B has only 5). Also g D
and D c D for any set D.

1.2F. DEFINITION. We say that two sets are equal if they contain precisely the same
elements.

Thus 4 =B if and only if A € B and B C A (verify!).
Note that for B and C in (1) of 1.2E, none of the relations B c C,C c B,C = B hold.

1.2G. It is often the case that all sets 4,B,C,... in a given discussion are subsets of a
“big” set S. Then S— A4 is called the complement of A (relative to S), the phrase in
parentheses sometimes being omitted. For example, the set of rational numbers is the
complement of the set of irrational numbers (relative to the reals). When there is no
ambiguity as to what S is we write S—A4 =A4". Thus A” [meaning (A4')’] is equal to A.
Moreover, S=A4 U A’. See Figure 4.

We now prove our first theorem.

1.2H. THEOREM. If 4, B are subsets of S, then
(AUB)Y=A4'NnB’ ()

FIGURE 4.
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and
(ANB)Y=A'"UB'. (2)

These equations are sometimes called De Morgan’s laws.

PROOF: If x&€(A4U B), then x&A U B. Thus x is an element of neither 4 nor B so
that x€ A’ and x€ B’. Thus x€A4'N B’. Hence (AU B)Y C A'N B’. Conversely, if y €
A'NB’, then yeA’ and y€B’, so that yZA and y&B. Thus yZAUB, and so
YE(AUB). Hence A'Nn B’c(A U B)'. This establishes (1).

Equation (2) may be proved in the same manner or it can be deduced from (1) as
follows: In (1) replace 4,B by A’, B’ respectively, so that A’, B’ are replaced by 4" =4
and B” = B. We obtain (4'U B’)’ = AN B. Now take the complement of both sides.

Exercises 1.2

1. Let A be the set of letters in the word “trivial,” 4 ={a,i,/,r,t,v}. Let B be the set of
letters in the word “difficult.” Find AU B,AN B,A— B,B— A. If S is the set of all 26
letters in the alphabet and 4’=S—A4,B'=S— B, find 4’,B’,A’N B’. Then verify that
A'NB'=(AUB).

2. For the sets 4,B,C in Exercise 1 of Section 1.1, describe geometrically AN B, BN

C,AnNC.
. Do the same for the sets A, B, C of Exercise 2 of Section 1.1.
4. For any sets A, B, C prove that

(AUB)UC=AU(BUC).
This is an associative law for union of sets and shows that 4 U B U C may be written
without parentheses.
5. Prove; for any sets 4, B, C, that
(ANB)NC=4AN(BNC).
This is an associative law for intersection of sets.
6. Prove the distributive law

AN(BUC)=(ANB)U(ANC).

w

See Figure 5.

FIGURE 5. AN(BUC)=(ANB)U(ANC)

7. Prove
(AUB)—(ANB)=(A—B)U(B—A).
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8. True or false (that is, prove true for all sets 4, B,C, or give an example to show false):
(@) (AUB)—C=AU(B—-C).
(b) (AuB)—A=B.
() (ANBYUBNCUANC)=AnBnNC.
(d) (AuB)NC=A4AuU(BnNC).
9. True or false:
(@) If AcB and BCC, then A CC.
(b) f AcCand BCC, thenAuBCC.
(c) [0,11D(0, 1).
) (x|lx|>43n (y]ly]>4)={z]|z| > 4).

1.3 FUNCTIONS

1.3A. In the cruder calculus texts we see the following definition: “If to each x (in a set
S) there corresponds one and only one value of y, then we say that y is a function of x.”
This “definition,” although it embodies the essential idea of the function concept, does
not conform to our purpose of keeping undefined terms to a minimum. (What does
“correspond” mean?)

In other places we see a function_defined as a graph. Again, this is not suitable for us
since “graph” is as yet undefined. However, since a plane graph (intuitively) is a certain
kind of set of points, and each point is (given by) a pair of numbers, this will lead us to
an acceptable definition of function in Section 1.3C.

1.3B. DEFINITION. If A,B are sets, then the Cartesian product of A and B (denoted
A X B) is the set of all ordered pairs* {a,b) where a€ 4 and bE B.

Thus the Cartesian product of the set of real numbers with itself gives the set of all
ordered pairs of real numbers. We usually call this last set the plane (after we define the
distance between pairs). See Figure 6.

The lateral surface of a right circular cylinder can be regarded as the Cartesian
product of a line segment and a circle. (Why?)

We are now in a position to define function.

1.3C. DEFINITION. Let 4 and B be any two sets. A function f from (or on) A into B is a
subset of 4 X B (and hence is a set of ordered pairs {a,b)) with the property that each
a € A belongs to precisely one pair {a,b). Instead of {x,y) Ef we usually write y = f(x).
Then y is called the image of x under f. The set A is called the domain of f. The range of f
is the set {b € B|b=f(a) for some a}. That is, the range of f is the subset of B consisting
of all images of elements of A. Such a function is sometimes called a mapping of A into
B.

If CCB, then f~!(C) is defined as {a€A|f(a)€C}, the set of all points in the
domain of f whose images are in C. If C has only one point in it, say C={y}, we usually
write f ~!(y) instead of f~!({ y}). The set f ~!(C) is called the inverse image of C under f.
(Note that no definition has been given for the symbol f~! by itself.)

If D C A4, then f(D) is defined as { f(x)|x € D}. The set f(D) is called the image of D
under f.

Consider Figure 7. The dots at the beginning of the arrows denote points in the
domain of f. Thus the statement f(a)= b is pictured by an arrow starting at ¢ and ending

* To keep the record clear we had better define “ordered pair.” What is needed is a set with a and b
mentioned in an asymmetrical fashion. How about defining {a,b) to be {{a},{a,b}}?



FIGURE 6. The Cartesian product of two intervals

FIGURE 7. Diagram of a function f from A into B
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at b. According to the definition of function, no two distinct arrows may begin at any
a € 4, but two (or more) may end at some b € B. We should think of f as sending points
of A4 to points of B. Note that f(a)=f(c)=>5 so that f~'(b)={a,c}.

If a function has domain and range both consisting of real numbers, then we can use
the familiar method of graphing the function in the x-y plane. It is often possible to infer
a good deal of information from such a graph. However, for understanding basic
concepts about functions such as limit and continuity, a diagram like that in Figure 7
often is more helpful than an x-y graph.

For example, the set f={{x,x*)|— o0 <x<oo} is the function usually described by
the equation

f(x)=x? (—o<x<o).

The domain of this f is the entire real line. The range of f is [0, ). In addition,

f(2)=4,
ST ®=(-22),
f7i=n=2,

S({xlx*=9})={9),
1(10.3))=[0.9)-

Draw, for this f, an x-y graph and a diagram like the one in Figure 7.

In the definition of function neither 4 nor B need be a set of numbers. For example, if
A is the American League (see Section 1.1) and B is the set of the fifty states together
with the District of Columbia, then the equation

f(x)=state (or district) containing home ball park of x(xEA4)

defines a function from A into B which consists of twelve ordered pairs.

Although an acceptable definition of function must be based on the set concept, the
set notation is clearly more cumbersome than the classical notation. Note, however, that
we make a notational distinction between f (the function) and f(x) (the image of x under
H-

It must be emphasized that an equation such as f(x)=1+ x> does not define a
function until the domain is explicitly specified. Thus the statements

f(x)=1+x> (1<x<3)
and
g()c)=l+x3 (1<x<4)

define different functions according to our definition.

It is useful, however, to introduce terminology to describe pairs of functions that are
related in the same way as f and g. In general, suppose f and g are two functions with
respective domains X and Y. If

XcyYy
and if
f(x)=g(x) (x€X),
we say that g is an extension of f to Y or that f is the restriction of g to X. That is, g is an

extension of f if the domain of g contains the domain of f and if the images under fand g
of all points in the domain of f coincide.
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1.3D. perINITION. If fis a function from A into B, we write f: A— B. If the range of f is
all of B, we say that f is a function from 4 onto B. In this case we sometimes write

f:A=B.

Thus if f(x)=x*— o0 < x<o0) and g(x)= x3*(— 0 < x < ®0), then
fi(—00,00)—(— 0, ),
g:(—00,0)=(—,®).

We now give three theorems on images and inverse images of sets.

L.3E. THEOREM. If f:4—B and if X CB,Y C B, then

ST uY)=fH X ufTI(Y). (1

In words, the inverse image of the union of two sets is the union of the inverse images.

PROOF: Suppose a€f~ (X U Y). Then f(a)€ X U Y. Hence either f(a)EX or f(a)E
Y so that either a€f~(X) or a€f~!(Y). But this says a€f~(X)Uf~!(Y). Thus
F'XuY)cf~ " X)uf ' (Y). Conversely, if bEf " (X)Uf~'(Y), then either be
f7Y(X) or bEfY(Y). Hence either f(b)EX or f(b)EY so that f(h)EX U Y. Thus
bef~Y(XUY) and so f~(X)uf (Y)cf X U Y). This proves (1).

The next theorem can be proved in exactly the same way.

1.3F. THEOREM. If f:4—B and if X C B,Y C B, then
fTXAY)=f"Y(X)nfI(Y).
In words, the inverse image of the intersection of two sets in the intersection of the
inverse images.
PROOF: The proof is left as an exercise.

The last two results concerned inverse images. Here is one about images.

13G. THEOREM. If f:A—B and X CA4,Y C A, then
FXuY)=f(x)Uf(Y).

In words, the image of the union of two sets is the union of the images.

PROOF: If bEf(XUY), then b=f(a) for some a€X U Y. Either a€EX or a€Y.
Thus either b€ f(X) or bEf(Y). Hence b € f(X)U f(Y) which shows f(X U Y)C f(X)U
f(Y). Conversely, if c€Ef(X)Uf(Y) then either c€f(X) or c €f(Y). Then c is the image
of some point in X or ¢ is the image of some point in Y. Hence c is the. image of some
pointin XU Y, thatiscEf(X U Y). So f(X)Uuf(Y)Cf(XUY).

1.3H. Conspicuously absent from this list of results is the relation
SXNnY)=f(X)nf(Y) forXcA,YCA.

Prove that this relation need not hold.

1.3}. DEFINITION (THE COMPOSITION OF FUNCTIONS). If f:4—B and g:B—C, then we
define the function geof by

gof(x)=g[f(x)]  (x€4).
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That is, the image of x under gof is defined to be the image of f(x) under g. The
function gef is called the composition of f with g. [Some people write g(f) instead of
g°f]

Thus geof: 4—C. For example, if

f(x)=1+sinx (—oo<x< ),
g(x)=x*  (0<x<o0),
then
gof(x)=1+2sinx+sin’x (- oo <x< o).

See Figure 8. Note that the range of f must be contained in the domain of g, but does not
have to be equal to the domain of g.
A B, c

X1
(g © filxy)

Mo h
) glfex,)]

X2

fixy)

g 9 fxy)

FIGURE 8. Diagram of gof

FExercises 1.3

1. We have defined a function as a certain kind of set. Show that two functions fand g
are equal (as sets) if and only if f and g have the same domain 4 and

f(x)=g(x) (x€4).
In other words, f=g if and only if f is “identically equal to g’

functions.
2. Let f: X—>Y.If AcX,BC X, show that f(4)—f(B)Cf(A — B).

1)

in the sense of
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Let
f(x)=logx (0<x< ).
(a) What is the range of f?
(b) If A=[0,1] and B=[1,2], find f~'(4).f~'(B).f ""(AU B).f (4N B).f~'(4)U
f~Y(B), and f~'(4)nf~'(B). Do your results agree with Sections 1.3E and
1.3F?

. Consider the sine function defined by

f(x)=sinx (—o<x<®).

(a) What is the image of 7 /2 under f?
(b) Find f~'(1).
(¢) Find f((0,/6).f (7 /6,7/2]).f(0,7/2)).
(d) Interpret the result of (c) using Section 1.3G.
(e) Let A=[0,7/6),B=[57/6,7]. Does f(AN B)=f(A)Nf(B)?
Consider the function f defined by
T T

f(x)=tanx (~—2—<x<5).
(a) What is the domain of f?
(b) What is the range of f?
(c) Let A=(—n/2,—7w/4),B=(7/4,7/2). Does f(AN B)=f(A)Nf(B)?
Can you give a geometric interpretation for the Cartesian product of
(a) A line segment and a triangle?
(b) A large circle and a small circle?

. Let A=(—00,0) and let B be the plane. Let f: 4— B be defined by

f(x)={cosx,sinx) (—oo<x<o0).

(a) What is the range of f?
(b) Find f~'[<0, 1)].

. Let A= B=(— o0, 0). Which of the following functions map 4 onto B?

(@) f(x)=3(— 00 <x<0),

(b) f(x)=[x]=greatest integer not exceeding x(— o0 < x < o0),

©) f(x)=x5+Tx+1(— o0 < x< 0), :

d) f(x)=e*(— o0 <x< ®),

() f(x) =sinhx(— o0 <x < ).

Let A ={1,2,...,n} and let B={0,1}. How many functions are there which map A4
into B? How many of these functions map 4 onto B?

If

f(x)=arcsinx (—1<x<1),

g(x)=tanx (——721<x<%),

and h=gef, write a simple formula for . What are the domain and range of 4?
Let I denote the set of positive integers, /={1,2,3,...}. If

f(n)y=n+17 (n€l),
g(n) =2n (nel),

what is the range of fog? What is the range of gof?
If f:tA—B,g: B—>C,h:C— D, prove that

ho(gef)=(hog)e°f.



14 SETS AND FUNCTIONS

13. For which of the following pairs of functions f and g is g an extension of f?
(a) f(x)=x(0< x<o0),
g(x)=|x|(— o0 <x < 0),
(®) f()=1(-1<x<1),
g(x)=1(0< x < 0),
(¢) f(x)=sinx(0< x <27),

g(x)=V1—cos’x (— o0 < x< ).

1.4 REAL-VALUED FUNCTIONS

1.4A. In later chapters it is most often the case that the range of a given function f is
contained in the set of all real numbers. (We henceforth denote the set of all real
numbers by R.) If f:A—R, we call f a real-valued function. If xE€ A, then f(x)
(heretofore called the image of x under f) is also called the value of f at x.

We now define the sum, difference, product, and quotient of real-valued functions.

1.4B. DEFINITION. If f: A—R and g:A— R, we define f+ g as the function whose value
at x EA is equal to f(x)+ g(x). That is, ‘

(f+e)(x)=f(x)+g(x) (x€EA).
In set notation
frg={{a.f(x)+g(x)|xEA}.
It is clear that f+g:4—R.
Similarly, we define f— g and fg by
(f—&)(x)=f(x)—g(x) (x€4),
(fo)(x)=f(x)g(x)  (x€EA).
Finally, if g(x)#0 for all x €4, we can define f/g by
f(x)
(%)(x)=m (x€A).
The sum, difference, product, and quotient of two real-valued functions with the same
domain are again real-valued functions. What permits us to define the sum of two

real-valued functions is the fact that addition of real numbers is defined. In general, if
f:A—>B,g:A— B, there is no way to define f+ g unless there is a “plus” operation in B.

1.4C. perINITION. If f: A— R and c is a real number (¢ € R), the function cf is defined
by

(f)x)=c[f(x)] (x€4).
Thus the value of 3f at x is 3 times the value of f at x.
1.4D. For a,b real numbers let max(a,b) denote the larger and min(a,b) denote the

smaller of a and b. [If a=b, then max(a,b)=min(a,b)=a=>.] Then we can define
max( f,g) and min(f,g) for real-valued functions f,g.

DEFINITION. If f:A—R,g:A— R, then max(f,g) is the function defined by
max(f,g)(x)=max[f(x).g(x)] (x&€4),
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and min(f,g) is the function defined by
min(f,g)(x)=min[f(x),g(x)]  (x€4),
Thus if f(x)=sinx(0< x < 7/2),g(x)=cosx(0< x <7 /2) and h=max(f,g), then

= kil
h(x)=cosx (O<x<4),
h(x)=sinx (z<x<1)
= 2 .
DEFINITION. If f: A—R, then | f| is the function defined by

A1) =1f()  (x€4).

If a,b are real numbers, the formulae

la—b|+a+b
max(a,b)= ————,
2
) —la—b|+a+b
min(a,b)= I E—
are easy to verify. (Do so.) From them follow immediately the formulae
|f—gl+f+g
max(f,g)= —
. —|f-gl+f+sg
min( f,g)= —

for real-valued functions f,g.

1.4E. In this section we consider sets which are all subsets of a “big” set S. If A C S,
then 4'=S— A4 (Section 1.2G). For each 4 C S we define a function x, as follows.

DEFINITION. If A C S, then x, (called the characteristic function of A) is defined as
X4(x)=1 (x€A4),
X4(x)=0 (xg4d").

The reason for the name “characteristic function” is obvious—the set A is char-
acterized (completely described) by x,. That is, 4 = B if and only if x, = x. The reader
should verify the following useful equations for characteristic functions where 4, B are
subsets of S.

XAuB=max(XA’XB)’ (1)
Xanp=MIN(X4s Xp) = X4 Xp>
X4-B=Xa~ X (provided B C 4),

XA'= l _XA9*
XS= 1,
Xz"_‘o-T

For example, to establish (1), suppose x €4 U B. Then x,, z(x)=1. But either x €4

* We are using 1 here to denote the real-valued function whose value at each x € S is equal to the number 1
(that is, here 1 is the “function identically 1). Thus the symbol 1 has two different meanings—one a
number, the other a function. The reader will be able to tell from the context which meaning to assign.

1 The 0 denotes the function identically 0.
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or x € B (or both), and so either x,(x)=1 or xgz(x)=1. Thus max(x,, xz)(x)=1. Hence

1=x,4,5(x)=max(x, xz)(x) (x€AU B) (2)

If xZAU B, then x,,5(x)=0. But x€4’n B’ by (1) of Section 1.2H and hence x €4’
and x € B’ so that x,(x)=0=xz(x). Thus max(x,, xg)(x)=0. Hence

0=2x,,5(x)=max(x,,xs)(x) (xZA4UB). (3)
Equation (1) now follows from (2) and (3).

Exercises 1.4

1. Let f(x)=2x(— 00 < x < o0). Can you think of functions g and s which satisfy the two
equations
gof=2gh,
hof=h*—g*?
2. If f(x)=x*— o < x<o0) and ¥ is the characteristic function of [0,9], of what subset
of R is x°f the characteristic function?
3. If f:A— B and x; is the characteristic function of £ C B, of what subset of 4 is xz°f
the characteristic function?
4. Use whatever concept of continuity you possess to answer this question and the next
one.
Is there a characteristic function on R that is continuous?
Do there exist three such functions?
5. Draw the graphs of two continuous functions f and g with the same domain.
Would you guess the max(f,g) and min(f,g) are continuous?

1.5 EQUIVALENCE; COUNTABILITY

According to the definition of function, if f:4— B, then each element aE€ A4 has
precisely one image f(a)€ B. It often happens, however, that some element b in the
range of f is the image of more than one element of 4. For example, if f(x)=x*(—oo <x
< o0), then 4 is the image of both —2 and +2. In this section we deal with functions f
with the property that each b in the range of f is the image of precisely one a in the
domain of f. '

1.5A. DEFINITION. If f: 4— B, then f is called one-to-one (denoted 1-1) if
f(a,)=f(a,) implies a,=a, (a,a,EA).

Thus if fis 1-1 and b=f(a,), then b+ f(a,) for any a, € A distinct from a,. Thus the
function f defined by f(x)=x*— o0 < x < ) is not 1-1 but the function g defined by
g(x)=x}0< x<o0)is 1-1.

Stated otherwise, a function fis 1-1 if f ~!(b) contains precisely one element for each b
in the range of f. In this case, f ' itself is a function. More precisely,

1.5B. DEFINITION. If f:4—B and f is 1-1, then the function f~! (called the inverse
function for f) is defined as follows:

If f(a)=b, thenf~'(b)=a (b inrange of f). (1)
Thus the domain of f~! is the range of f and the range of f ~' is 4 (the domain of f). The
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definition of the function f ! is consistent with the definition of inverse image in Section
1.3C. For if fis 1-1 and f(a)=b, then the inverse image of {b} is {a}. That is,
f7'({b})={a). If we omit the braces, we obtain (1). )

For example, if g(x)=x%0< x <o), then g~ '(x)=Vx (0< x< o). For, if b=g(a)
=qa?, then a= Vb =g~ !(b). Also, if h(x)=e*(— o < x< ), then h~!(x)=logx(0< x
< o0). For, if b=h(a)= e, then a=loghb=h"'(b).

From the definition of inverse function it follows that

[ f(a)]=a  (a€a),
f[f_'(b)]=b (b in range of f).

1.5C. A function that is both 1-1 and onto (Section 1.3D) has a special name.

DEFINITION. If f: A= B and f is 1-1, then f is called a 1-1 correspondence (between A4
and B). If there exists a 1-1 correspondence between the sets 4 and B, then 4 and B are
called equivalent.

Thus any two sets containing exactly seven elements are equivalent. The reader should
not find it difficult to verify the following.

1. Every set A4 is equivalent to itself.

2. If A and B are equivalent, then B and 4 are equivalent.

3. If A and B are equivalent and B and C are equivalent, then 4 and C are
equivalent.

We shall see presently that the set of all integers and the set of all rational numbers are
equivalent, but that the set of all integers and the set of all real numbers are not
equivalent. First let us talk a little bit about “infinite sets.”

1.5D. The set A4 is said to be infinite if, for each positive integer n, A contains a subset
with precisely n elements.*
Let us denote by 7 the set of all positive integers—

I={1,2,...}.

Then [ is clearly an infinite set. The set R of all real numbers is also an infinite set. The
reader should convince himself that if a set is not infinite, it contains precisely » elements
for some nonnegative integer n. A set that is not infinite is called finite.

It will be seen that there are many “sizes” of infinite sets. The smallest size is called
countable.

1.5E DEFINITION. The set A is said to be countable (or denumerable) if 4 is equivalent
to the set I of positive integers. An uncountable set is an infinite set which is not
countable.

Thus A4 is countable if there exists a 1-1 function f from 7 onto A. The elements of A4
are then the images f(1),f(2),..., of the positive integers—

A={f(1).SQ2),---},

[where the f(i) are all distinct from one another].

*If n is a positive integer, then the statement “B has n elements” means “B is equivalent to the set
{1,2,...,n}).”
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Hence, saying that 4 is countable means that its elements can be “counted” (arranged
with “labels” 1,2,...). Instead of f(1),f(2),..., we usually write a,,a,,....

For example, the set of all integers is countable. For by arranging the integers as
0,—1,+1,—-2,+2,..., we give a scheme by which they can be counted. [The last
sentence is an imprecise but highly intuitive way of saying that the function f defined by

f="2 (a=135.),

f(n)= ‘T” (n=2,4,6,...),

is a 1-1 correspondence between / and the set of all integers. For f(1),f(2),... is the
same as 0, — 1,1, —2,2,....] See Figure 9.

This example shows that a set can be equivalent to a proper subset of itself.

The same reasoning shows that if 4 and B are countable, then so is 4 U B. For 4 can
be expressed as 4 ={a,,a,,...} and similarly B= {b,,b,,...}. Thus a,,b,,a,5,b,,a3,bs,... is
a scheme for “counting” the elements of 4 U B. (Of course, we must remove any b, which
occurs among the g;’s so that the same element in 4 U B is not counted twice.)

FIGURE 9. Diagram of a 1-1 correspondence between the set of positive integers
and the set of all integers
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The following theorem gives a much stronger result.

1.5F. THEOREM. If 4,,A4,,... are countable sets, then* U4, is countable. In words,
the countable union of countable sets is countable.

PROOF: We may write 4,={a|,a;,a3,...},4,={a},a3,a3,...},....,4,={a],

ay,as,.. } so that af is the kth element of the set A4;. Define the helght of aj to bej+ k.
Then af is the only element of height 2; likewise z12l and a} are the only elements of
height 3; and so on. Since for any positive integer m > 2 there are only m — 1 elements of

height m, we may arrange (count) the elements of U4, according to their height as
all,af,az,a3,a22,af,a?,...,

being careful to remove any aj that has already been counted.
Pictorially, we are listing the elements of U ;> 4, in the following array and counting
them in the order indicated by the arrows:

a, a‘2'~

The fact that this counting scheme eventually counts every a/ proves that U®_ 4, is
countable.

We obtain the following important corollary.
1.5G. corOLLARY. The set of all rational numbers is countable.

PROOF: The set of all rational numbers is the union U2 E, where E, is the set of
rationals which can be written with denominator n. That is, E,={0/n,—1/n,1/n,-2/
n,2/n,...}. Now each E, is clearly equivalent to the set of all integers and is thus
countable. (Why?) Hence the set of all rationals is the countable union of countable sets.
Apply 1.5F.

It seems clear that if we can count the elements of a set we can count the elements of
any subset. We make this precise in the next theorem.

1.5H. THEOREM. If B is an infinite subset of the countable set 4, then B is countable.

PROOF: Let 4= {a,,a,,...}. Then each element of B is an a;. Let n, be the smallest
subscript for which a, € B, let n, be the next smallest, and so on. Then B={a, ,a,,...}.
The elements of B are thus labeled with 1,2,..., and so B is countable.

1.51. COROLLARY. The set of all rational numbers in [0,1] is countable.

PROOF: The proof follows directly from 1.5G and 1.5H.

* We have not used the symbol U .4, before. It means, of course, ‘the set of all elements in at least one of
the 4,,.
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Exercises 1.5

1.

10.
11.

12.
13.

Which of the following define a 1-1 function?
(@) f(x)=e*(— o< x< ™),

(b) f(x)=e*(— o0 < x< o),

(c) f(x)=cosx(0< x< ),

(d) f(x)=ax+b(— o0 <x<™),a,bER.

. (@) If f:A—B and g: B—C and both f and g are 1-1, is g°f also 1-1?

(b) If fis not 1-1, is it still possible that gofis 1-1?
(c) Give an example in which fis 1-1, g is not 1-1, but gofis 1-1.

. Let P, be the set of polynomial functions f of degree n,

f(x)=apx"+ax"" '+ +a,_x+a,

where n is a fixed nonnegative integer and the coefficients agay,...,a, are all
integers. Prove that P, is countable. (Hint: Use induction.)

. Prove that the set of all polynomial functions with integer coefficients is countable.
. Prove that the set of all polynomial functions with rational coefficients is countable.

(Hint: This can be done by retracing the methods used in the preceding two
problems.) However, also try this: Every polynomial g with rational coefficients can
be written g=(1/N)f where f is a polynomial with integer coefficients and N is a
suitable positive integer. (Verify.) The set of all g that go with a given N is countable
(by Exercise 4 of Section 1.5). Finish the proof.

We are assuming that every (nonempty) open interval (a,b) contains a rational
(Introduction). Using this assumption, prove that every open interval contains
infinitely many (and hence countably many) rationals. '

Show that the intervals (0, 1) and [0, 1] are equivalent. (Hint: Consider separately the
rationals and irrationals in the intervals.)

Prove that any infinite set contains a countable subset.

Prove that if 4 is an infinite set and x €4, then 4 and 4 —{x} are equivalent. (This
shows that any infinite set is equivalent to a proper subset. This property is often
taken as the definition of infinite sets.)

Show that the set of all ordered pairs of integers is countable.

Show that if 4 and B are countable sets, then the Cartesian product 4 X B is
countable.

Prove that the family of all finite subsets of a countable set is itself countable.

(a) If fis a 1-1 function from A4 onto B, show that

flof(x)=x (x€A4), and fof~(y)=y (y€B).
(b) If g:C—A and h=fog, show that g=f""oh.

1.6 REAL NUMBERS

This section is out of logical order. We shall not at this time define the terms “decimal
expansion,” “binary expansion,” and so on; rather, we rely here on the reader’s
experience and intuition. These terms, and the assumptions concerning them, are
discussed carefully in Chapter 3. Insofar as the logical development of this book is
concerned, this section could be ignored. Insofar as examples and understanding are
concerned, however, this section should definitely not be ignored.

We have not as yet given an example of an infinite set that is not countable. We shall
soon see that the set R of all real numbers provides such an example.
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We shall assume that every real number x can be written in decimal expansion.
a 3 a;
10102 10°
where the g; are integers, 0< ¢, <9. This expansion is unique except for cases such as
x =1 which can be expanded

3=0.500000--- and 3=0.49999---.

Every number x €[0,1] can thus be expanded x=0.4,a,a;---. Conversely, we assume
that every decimal of the form

x=b.aya,a; - =b+ +ee

b.ajayay- -+
is the decimal expansion for some real number. (We have not defined the real numbers.
Hence we now take these relations between decimal expansion and real numbers as
assumptions. As we presently show, however, they are consequences of the more basic
axiom 1.7D.)

1.6A. THEOREM. The set [0,1]={x|0< x <1} is uncountable.

PROOF: Suppose [0,1] were countable. Then [0, 1]={x, x,,...} where every number
in [0, 1] occurs among the x;. Expanding each x; in decimals we have

x,=0.alaya; -

x,=0.a%a2a?- - -

= h,n n.c- n---
x,=0.alajaz - q

n

Let b, be any integer from 1 to 8 such that b, a|. Then let b, be any integer from 1 to 8
such that b, a?. In general, for each n=1,2,..., let b, be any integer from 1 to 8 such
that b,#a,’. Let y=0.b,b,- - - b,- - -. Then, for any n, the decimal expansion for y differs
from the decimal expansion for x, since b, a,'. Moreover, the decimal expansion for y
is unique since no b, is equal to 0 or 9. Hence y#x, for every n. Since 0< y <1,
this contradicts the assumption that every number in [0, 1] occurs among the x;. This
contradiction proves the theorem.

1.6.B. corOLLARY. The set R of all real numbers is uncountable.

PROOF: By 1.5H, if R were countable, then [0, 1] would be countable, contradicting
1.6A. Hence R is uncountable.

Here is another proof of 1.6B. Suppose R were countable—R = {x,,x,,...}. Let I, be
the interval (x, — §,x, + $), let I, be the interval (x,— §,x,+ §), and in general, for each
positive integer n, let I, denote the interval (x,—27 "', x, +27""!). Then the length of I,
is 27" so the sum of the lengths of all the 7, is 27'+272+273+ ... =1. But x, €/, so
that R=uU ;% {x,} Cc U= 1, But then the whole real line (whose length is infinite)
would be covered by (contained in) a union of intervals whose lengths add up to 1. This
seems to be a contradiction. Is it?

1.6C. In addition to decimal expansions it is useful to consider binary and ternary
.expansions for real numbers.
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The binary expansion for a real number x uses only the digits 0 and 1. For example,
0.a,a,a; -+ means a,/2+a,/2*+a,/2>+ - -+ so that

1=0.10000---  (2),
1=001000---  (2),
L=000010---  (2),
Bo1414L=01101000--- (2),

where the (2) denotes binary expansion.
Similarly, the ternary expansion of a real x uses the digits 0,1,2. Thus

X=0~b]b2b3.-. (3)
means
bl bz b3
T3 TRt
For example,
1=0.1000- - - (3)s
1=0.0222--- (3),
L=0.111111-++  (3),
S$=141=021111---  (3).

The ternary expansion for a real number x is unique except for numbers such as } with
two expansions, one ending in a string of 2’s, the other in a string of 0’s.

1.6D. The following set serves as a useful example later on.

DEFINITION. The Cantor set K is the set of all numbers x in [0, 1] which have a ternary
expansion without the digit 1.

Thus the numbers 4 =0.0222--- (3) and £=0.20000--- (3) are in K, but any x such
that 1 < x <% is not in K. [For such an x can only be expanded x= 0.15,b5- -+ (3).]

For x=0.b,b,b5-++ (3) in K (where each b; is 0 or 2), let f(x)=y=0.a,a,a; - (2)
where a;= b, /2. For example, if x=1=0. 0222 - (3), then f(x)=y=0.0111--- (2)=
Then 0< y <1, and f is a function from K into [0, 1]. It is not difficult to see that f is
actually onto [0, 1], and it follows immediately that K is not countable. (See Exercise 1 of
Section 1.6.)

On the other hand, we have already observed that (1,%)C K’ where K'=[0,1]- K
Similarly, the interval I, = (%, %) (which is the open middle third of [0, ]) and the mterval
I,=(%,%) (which is the open middle third of [%, 1]) are subsets of K’ since any number in
I, or I, must have a 1 as the second digit in its ternary expansion. Thus the Cantor set K
can be obtained in the following way.

1. From [0, 1] remove the open middle third leaving [0, 1] and [3,1].

2. From each of [0,1] and [%,1] remove the open middle third leaving [0, §],
[9’9] [9,§] 359

n. Continue in this manner so that, at the nth step the open middle third is removed
from each of 2"~ ! intervals of length 37"*!, The total of the lengths removed at the
nth step is thus 2"7'.1.37"*!'=2""1/3" There then remain 2" intervals each of
length 37", During this nth step the numbers removed are precisely those with a 1
as the nth digit in their ternary expansion.
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It is clear that what remains of [0, 1] after this process is continued indefinitely is
precisely the set K. Note that the sum of the lengths of the intervals in K’ is
142:-14-.-42"71/3"+... =1. Thus K C[0,1] and is the complement of the union of
open intervals whose lengths add up to 1. (This seems to say that K is “small” in contrast
to the uncountability of K which seems to say that K is “big.” That is why K is
interesting.)

1.6E. We have seen that the set R is “bigger” than the set / in the sense that / is
(equivalent to) a subset of R but I is not equivalent to R itself. It is natural to ask
whether there exists a set that is “bigger” than R. We shall now show that the class S of
all subsets of R is “bigger” than R.

The elements of S are thus the subsets of R—that is, 4 €S if and only if A CR. In
particular, if r €R, then {r} €S, and so S contains as a subclass the class {{r}|rE R} of
subsets of R containing one element. Clearly, R is equivalent to this subclass.

On the other hand, R is not equivalent to S. For suppose the contrary. Then there
would be a 1-1 function f from R onto S. For each x € R, then, f(x) is a subset of R and
every subset of R is equal to f(x) for some x € R. A given x € R may or may not be an
element of the image subset f(x). Let

A={xER|x&f(x)}.

Then ACR and so A€S. Hence 4= f(x,) for some x,ER. Now we arrive at a
contradiction. For either x,€ A or x,&A. But

1. If x,€ A, then x,£Zf(x,) (by definition of 4), and so x,& A4 [since 4 = f(x,)].
2. If xo& A, then x, & f(x,) [since 4 =f(x,)], and so x,€ A (by definition of 4).

Thus both x,€A4 and x,& A are impossible. The contradiction proves that R is not
equivalent to S.

It is clear that no properties special to R were used. The argument therefore applies to
any set B. We have thus shown that B is not equivalent to the class of subsets of B. In
particular, there is no “biggest possible” set.

FExercises 1.6

1. If f:A—B and the range of f is uncountable, prove that the domain of f is

uncountable.

Prove that if B is a countable subset of the uncountable set 4, then A — B is

uncountable.

. Prove that the set of all irrational numbers is uncountable.

. If a,b€ R and a < b, show that [a, b} is equivalent to [0, 1].

. Prove that between any two distinct real numbers there is an irrational number.

. Prove that the set of all characteristic functions on / is uncountable.

. A real number x is said to be an algebraic number if x is a root of some polynomial
function f with rational coefficients [that is, f(x)=0]. A transcendental number is a
real number that is not an algebraic number.

Assume that a polynomial of degree »n has at most »n roots. Prove that the set of all
transcendental numbers is uncountable. (See Exercise 5 of Section 1.5.)

8. For the function f in 1.6D show that f(§)=f(%). More generally, show that if (a,b) is
any one of the open intervals removed in the construction K, show that f(a)=f(b).
(Hint: Show that a and b can be written a=0.a4,a,- - - a,1, b=0.a,a, - - a,2, where
each g; is 0 or 2. Then rewrite the expansion for a using only 0 and 2.)

N
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9. Show that if x,y €K, x <y, and f(x)=f(y) (where fis as in 1.6D), then (x,y) is one
of the intervals (a,b) of the preceding exercise. (This shows that if we removed all
such b’s from the Cantor set, then f would be a 1-1 function from what remains of K
onto [0,1].)

10. Prove that the Cantor set is equivalent to [0, 1].

11. For each tER, let E, be a subset of R. Suppose that if s<¢, then E, is a proper
subset of E,. (That is, E,C E,, E,# E,.) Must U, E, be uncountable? (4dnswer:
No.)

1.7 LEAST UPPER BOUNDS

The proofs of many of the basic theorems of elementary calculus—existence of
maxima and minima, the intermediate value theorem, Rolle’s theorem, the meanvalue
theorem, and so on—depend strongly on the so-called completeness property of the real
numbers R. There are many ways to formulate this property. We do so in 1.7D with the
“least upper bound axiom.” First we have to define bounded sets and upper bounds.

1.7A. DEFINITION. The subset 4 C R is said to be bounded above if there is a number
N € R such that x < N for every x € A. The subset A C R is said to be bounded below if
there is a number M € R such that M < x for every x€A4. If 4 is both bounded below
and bounded above, we say that 4 is bounded.

Thus A4 is bounded if and only if A C[M,N] for some interval [M, N] of finite length.
The set I of positive integers is bounded below but not above. Hence I is not bounded.
The interval [0, 1] is bounded. This shows that the boundedness of a set has nothing to
do with countability.

1.7B. DEFINITION. If 4 C R is bounded above, then N is called an upper bound for A4 if
x< N forall x€A. If ACR is bounded below, then M is called a lower bound for A4 if
M < x for every x EA.

We often abbreviate upper bound and lower bound by u.b. and Lb. respectively. Thus
—7is an Lb. for /. The number 1 is an u.b. for the set B={4,3,7,....,(2"—1)/2",...}.
Note that infinitely many numbers greater than —7 are lower bounds for I, but that
there is no number less than 1 which is an upper bound for B. This leads us to the
concept of least upper bound and greatest lower bound.

1.7C. DEFINITION. Let the subset 4 of R be bounded above. The number L is called the
least upper bound for 4 if (1) L is an upper bound for 4, and (2) no number smaller
than L is an upper bound for 4. See Figure 10.

a b
FIGURE 10. If A=(a,b), then ¢ is an upper bound for 4, and b is
the least upper bound for A

Similarly, / is called the greatest lower bound for the set 4 bounded below, if / is a
lower bound for 4 and no number greater than / is a lower bound for 4.
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We abbreviate “least upper bound” as lu.b. (or lLub., o, x), and “greatest lower
bound” as g.L.b. It is immediate that a set 4 can have no more than one lL.u.b. For if
L=1lu.b. for A and M < L, then, by (2), M is not an upper bound for A. Moreover, if
M > L, then M cannot be a lL.u.b. for 4 since L is an u.b. and L < M. Similarly, no set
can have more than one g.l.b.

It is not at all obvious that a nonempty set 4 which is bounded above necessarily has
a Lu.b. This is the subject of the least upper bound axiom to be given shortly. First we
give some examples.

If B={%,32,...,2"—1)/2",...}, then g.lb.,c gy x=1 and Lu.b. .z x=1. (Verify!) Note
that the g.Lb. for B is an element of B but that the L.u.b. for B is not an element of B.
The set (3,4) (open interval) does not contain either its g.l.b. or its L.u.b., which are 3 and
4 respectively.

The g.l.b. for I is 1. There is no l.u.b. since / is not bounded above.

The g.l.b. and the Lu.b. for {0} are both equal to 0.

According to our definitions, the empty set & is bounded since @ C[M,N] for any
interval [M,N]. Thus every number N €R is an u.b. for @ and so @ does not have a
l.u.b.

The following axiom would be a theorem if we were to develop set theory carefully
and then construct the real numbers from the definition. Since we are not doing this we
call it an axiom.

1.7D. LEAST UPPER BOUND AXIOM. If 4 is any nonempty subset of R that is bounded
above, then A4 has a least upper bound in R.

This axiom says roughly that R (visualized as a set of points on a line) has no holes in
it. The set of all rational numbers does have holes in it. (That is, the l.u.b. axiom does not
hold if R is replaced by the set of all rationals.) For example, if 4={1,14,141,

1.414,...}, then (in R) the Lu.b. for 4 is V2 which is not in the set of rationals. Thus if
we had never heard of irrational numbers, we would say that 4 had no Lu.b.
Our assumptions about the relation between real numbers and decimal expansions are
consequences of the Lu.b. axiom 1.7D. We show how to deduce them in the next chapter.
The statement for g.l.b. corresponding to 1.7D need not be taken as an axiom. It can
be deduced from 1.7D.

1.7E. THEOREM. If A is any nonempty subset of R that is bounded below, then A has a
greatest lower bound in R.

PROOF: Let B C R be the set of all x € R such that — x € 4. (That is, the elements of
B are the negatives of the elements of A.) If M is a lower bound for 4, then — M is an
upper bound for B. For if x€ B, then —x€4 and so M < —x,x< —M. Hence B is
bounded above so that, by 1.7D, B has a l.u.b. If Q is the L.u.b. for B, then — Q is the
g.l.b. for 4. (Verify.)

One interesting consequence of the least upper bound axiom is the following result
called the Archimedean property of the real numbers.

1.7F. THEOREM. If a and b are positive numbers, then there exists n €/ such that
na > b. (Thus no matter how small a is or how large b is, there is an integral multiple of a
that is greater than b.)
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PROOF: Let
A={naln€l}.

If the theorem were false, then b would be an upper bound for 4. Hence by 1.7D, the set
A would have a least upper bound. Let B=Ilu.b.4. Then, since B is the least upper
bound, the number B — a is not an upper bound for 4 so that B—a < na for some n€ 1.
But then B < (n+ 1)a and, since (n+ 1)a € 4, this shows that B is not an upper bound for
A. This is a contradiction, and the theorem is proved.

Exercises 1.7

1. Find the g.1.b. for the following sets.
(a) (7,9).
(b) {(w+1,m+2,7+3,...}.
©) {r+lm+ia+i7+5,...}
2. Find the Lu.b. for the following sets.
(a) (7,8).
(b) {7+l o+i,7+4,...}.
(c) The complement in [0, 1] of the Cantor set.
3. Give an example of a countable bounded subset 4 of R whose g.l.b. and lL.u.b. are
both in R— 4.
4. If A is a nonempty bounded subset of R, and B is the set of all upper bounds for 4,
prove
g.l.b. y=lLu.b.x.
yEB xXEA
5. If A4 is a nonempty bounded subset of R, and the g.l.b. for 4 is equal to the lL.u.b. for
A, what can you say about 4?
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SEQUENCES
OF REAL NUMBERS

2.1 DEFINITION OF SEQUENCE AND SUBSEQUENCE

Our intuitive concept of the term “sequence of numbers” involves not only a set of
numbers but also an order—there is a first number, a second and so on. That is, for each
positive integer 1, 2, 3,..., there is “associated” a number in the sequence. We make this
precise in the following definition.

2.1A. DEFINITION. A sequence S = {s5,}%, of real numbers is a function from I (the set
of positive integers) into R (the set of real numbers).

The notation* {s;}:2, is classical. The real number s, is (by definition) S (i). Instead of
S or {s;}{2,, we sometimes write s, $,,.... The number s;,(i=1,2,...) is called the ith
term of the sequence.

Sequences such as {s;}%2 _  or {s;}?, (M a positive integer) may also be defined. We
leave these definitions to the reader. Unless otherwise stated, we use sequence to mean
{s,}7>,—a function with domain 1. B,

There is, of course, no reason to restrict the definition of sequence to sequences of real
numbers. In later sections we use sequences of sets and sequences of functions. For
example, if X is any set, then a sequence { £;}%, of subsets of X is defined as a function
from I into the class of all subsets of X.

2.1B. DEFINITION. Having defined sequence we would now like to formulate the con-
cept of subsequence. Even though the idea of subsequence is easy to visualize, it is not
quite obvious how to define subsequence making sure that a subsequence is still a

*It does not matter what subscript is used. We sometimes use j, k, /, m, or n. That is, {5} ,={s5}2,
_{S n-l
In addition, do not confuse the sequence {s,}5_, with the set {s,,s5,,...}. For example, if 5,=2(n€1I), then

the set A ={s,,s,,... } contains only one element, That i is, A ={2}. The sequence {s,} -, considered as a set

(since it is a function), has infinitely many elements. In set notation

{sahrmi={n2D|nET}.

n=1>

27
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sequence. (Try it.) In reading the next paragraph, use whatever intuitive idea of
“subsequence” you have.

If s,,s,,... 1s a sequence, a subsequence is usually written s, . That is, from the
original sequence we “keep” only those terms whose subscrlpts are n,, n,,.... But these
numbers n;, n,,... themselves form a subsequence of the sequence of posmve integers 1,
2, 3,.... Thus we first define “subsequence of the sequence of positive integers” and then
define subsequences of an arbitrary sequence of real numbers.

2.1C. DEFINITION. A subsequence N of {n}>_, (the sequence of positive integers) is a
function from 7 (the set of positive integers) into / such that

NN () if i<j (ijel).
Since N:I—1 it follows that N:I/—R. Therefore N is a sequence. Roughly, then, a
subsequence of {n}_, is a sequence of integers whose terms get larger and larger. For

example, the sequence of primes 2, 3, 5, 7, 11,... is a subsequence of {n}. Other
examples are 2, 4,6, 8,... and 1, 3, 5, 7,...

2.1D. perINITION.  If S={s,}°_, is a sequence of real numbers and N={n,}2, is a
subsequence of the sequence of positive integers, then the composite function SoN is
called a subsequence of S.

Note that for i €] we have

N(i)=n,
SeN()=S[N()]=S(n)=S,,
and hence
S°N={:v,,,}lf'i1

Thus our definition 2.1D conforms to the accepted notation s, , s, ,... for subsequences.
In effect, N tells us which terms of S to keep.
For example, let us denote the sequence 1, 0, 1, 0,... by B, and define N={n,}72, by

n=2i—-1 (i€l)

so that n;=1, n,=3, ny=5,.... Then B°N is the subsequence 1, 1, 1,... of B. For
another example, if C={c,}>_,= {\/_ }*_1, and N={n}2,={i*}2,, then

CoN={c,}, {\F},_,—{ Ve

Exercises 2.1

1. Let {s,}>_, be the sequence defined by
s;=1,
s,=1,

=s,+5

S, n—1

” (n=2,3,4,...).

Find sg. (The numbers s, are called the Fibonacci numbers.)
2. Write a formula or formulae for s, for each of the following sequences. [For example,
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the sequence 2, 1,4,3,6,5,8,7,... can be described by s,=n+1(n=1,3,5,...),s,=n—
1 (n=2,4,6,...).]
(a) 1,0,1,0,1,0,....
(b) 1,3,6,10,15,....
(©) 1,—4,9, —16,25, - 36,....
@ 1,1,1,2,1,3,1,4,1,5, 1,6,....

3. Which of the sequences (a), (b), (c), (d) in the previous exercise are subsequences of
(n)o?

4. If S={s,}2.,={(2n—1}%_, and N={n}2 ,={i*}2,, find $5,59:11,5,.. Is N a sub-
sequence of {k}3_,?

5. Let S be a sequence. Prove that every subsequence of a subsequence of S is itself a
subsequence of S.

6. If {s, )= is a subsequence of {s,}7.,, prove that

n>k (keI

2.2 LIMIT OF A SEQUENCE

The concept of limit is one of the most important (and conceivably the most difficult)
in analysis. In this section we define the limit of a sequence (function on 7). Limits for
other functions are discussed in the fourth chapter.

Roughly speaking, the sequence {s,}i>_, has the limit L if s,— L is “small” for all
sufficiently large values of n. From this crude description, we would expect that the
sequence 1,1,1,...,has the limit 1, that the sequence 1,1,4,..., has the limit 0, and the
sequence 1, —2,3, —4,..., does not have a limit. We shall see that our intuition in these
cases is correct.

In other cases, for example {nsin(w/n)}5_,, our intuition is not sharp enough to tell if
a given sequence has a “limit” or to compute the “limit” if there is one. We need a
precise definition of “limit of a sequence” and enough theorems about the definition to
make computations easy.

2.2A. DEFINITION. Let {s,}., be a sequence of real numbers. We say that s,
approaches the limit L (as n approaches infinity),* if for every € >0 there is a positive
integer N such that

|s,—L|<e (n>N). (1)
If s, approaches the limit L we write
lim s,=L
n—oo

or
s,—>L (n—>o).

Instead of “s, approaches the limit L” we often say that the sequence {s,}>_, has the
limit L.

We emphasize the fact that our definition requires that L be a real number.
Thus lim = L means that for any € >0, the inequality |s,— L|<e must hold for

n—»oosn

* The phrase “as n approaches infinity” is part of the definition. We are not defining “infinity.”
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all values of n except at most a finite number—namely, n=1,2,...,N—1. The value of N
will, in general, depend on the value of e. Thus for a given {s,}5_,, the proof that

n=1
lim = L consists, upon being given an € >0, of finding a value of N such that

|s,—L|<e (n>N).

There is no need to find the smallest value of N for which (1) holds. If, for each €>0,
any N for which (1) is true has been found, this proves lim,_, s, = L.

Consider Figure 11. All of the s,, except for at most a finite number of n, must be
inside the parentheses.

n—»oosn

5 SN-1 SN+ SN+ 2 SN~ S2. S3
| | (| | I l
L\— € L L
FIGURE 11. Diagram of ”ll)ngo s,=L

+

For example, consider the sequence 1,%,%,.... That is, consider {s,}%., where
s,=1/n (n=1,2,...). We would naturally guess that this sequence has the limit L=0.
Let us prove this. Given € >0 we must find N so that (1) holds. In this case (1) reads

H—o‘« (n>N),

or

Lee > @)
Thus if we choose N so that 1/N <e, then certainly (2), and thus (1), will hold since
1/n<1/Nif n>N.Now 1/N<e if and only if N >1/¢. Hence if we take any N €1
such that N >1/e, then (1) will hold for this sequence {s,}_, with L=0. This proves

lim 1/n=0. Note that the limit 0 is not equal to any term of the sequence.

n— oo

Let us now examine the sequence {s,}i_; where s,=1 (n=1,2,...). We have pre-
viously guessed that this sequence has the limit L=1. To prove this we note that
s,—L=1-1=0 so that for any € >0,

|s,— L|<e (n>1). )
Thus in this case, for any € >0 we can make (1) hold by taking N = 1. (This is one of the
rare cases where N does not depend on e.) This proves lim,_, 1=1.

For a third example, consider {s,}%_, where s,=n (n=1,2,...)—that is, consider the
sequence 1,2,3,.... We shall prove this sequence does not have a limit. Assume the
contrary. Then lim,_,s,= L for some L € R. Then for any € there is an N for which (1)
holds. In particular, for e=1 there is an N for which (1) holds:

ls,—L|<1 (n>N).
This is equivalent to
-1<s,—L<1 (n>N)
or ’
—1<n—-L<1 (n>N)
or
L-1<n<L+1 (n>N).
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The last statement says that all values of n greater than N lie between L—1 and L+ 1.
This is clearly false and the contradiction shows that {s,}%_,={n}>_, does not have a
limit.

The last example shows that a sequence whose terms get “too big” cannot have a limit.
This is not the only kind of sequence that does not have a limit. Consider the sequence
{s,} - where s,=(—1)" (n=1,2,...). The terms of this sequence are —1,1, —1,1,....
Suppose there were an L € R for which lim,_, s, = L. Then for e=1 there would be an
N €1 such that (1) holds. That is,

(-1)"=L|<}  (n>N). (3)
For n even (3) says
I1-L|<i; 4)
while for n odd (3) says
|I-1-L|<1. (%)

Since |a — b] is the distance from a to b, (4) implies that L is less than 1 unit away from
1, while (5) implies that L is less than § unit away from — 1. This is a contradigtion. [To
deduce a contradiction from (4) and (5) without geometry, reason as follows: The
inequality (5) is equivalent to |14 L|<1. But then

2=2|=|1+1|=|(1+ L)+ (1= L)|<|1+ L|+|1-L|<i+i=1,

which is a contradiction.]

Hence no limit L exists for the sequence {(—1)"}5_, (even though the terms of the
sequence all have absolute value 1 and hence are not “too big”).

We emphasize that at this early stage in our development of limit, if we wish to show
that a given sequence has a limit, then we must first guess what the limit is! We have as
yet developed no general criteria that will tell us if a limit exists for a given sequence.
Here is an example indicating how to go about guessing under a typical set of
circumstances.

Let

o 2n *
{2
n=1

n+4n'/?

When 7 is “large,” then n is “much bigger than” n'/2. We thus guess that, for purposes of
g g8 purp

establishing what the limit is (if it exists), the 4n'/2 term can be ignored. That is, we have
s,=2n/(n+0) where, as n becomes larger, the quantity § becomes more and more
negligible compared to the other quantities (even though @ =4n'/? itself is “large” when
n is “large”). Thus, for “large” n, s, must be near 2. We therefore guess that {s,}>_, has
the limit 2.

From a slightly different, and a more algebraic point of view, we note that s,=
2/(1+4/n'/?). As n gets “large” the 2 and the 1 are not affected but 4/n'/? gets
“small.” In the “long run” s, is roughly 2/(1+0). So again we guess lim,_ s,=2.

Now let us prove that lim,_, s, =2. Given € >0 we must find (calculate) N € such
that

2n
—_——2I<e n>N). 6
n+4n'/? | ( ) (©)
The inequality (6) is equivalent to
2n—2n—_8n'/?
—|<e n>N),
n+4n'/? ( )
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or
8n'/2
——=<e n>N). 7
n+4n'/2, ( ) O
Now the left side of (7) is less than 8n'/2/n=8/n'/2 (Why?) Hence (7) will be true if
8
Rz <e (n>N). (®)

If we choose N so that 8/N!/2<, that is, choose N >64/¢2, then (8) will certainly be
true. (For 8/n'/2<8/N'/? if n> N.) We have thus shown that if N is any positive
integer greater than 64 /¢, then (8) and hence (7) and finally (6) will be true. This proves
lim,_ . s,=2.

Our intuition tells us that a sequence of nonnegative numbers cannot have a negative
limit. This we now prove.

s, =L

n—oo “n ’

2.2B. THEOREM. If {s,}’-, is a sequence of nonnegative numbers and if lim
then L >0.

PROOF: Suppose the contrary, namely that L <0. Then for e= — L/2 there exists
N €1 such that

|s,,—L|<*TL (n>N).
In particular
- L
|SN - L| < 2 ’
which implies
- L
- L<—=
Sy < 2
or
L
Sy < 5

But, by hypothesis, sy > 0. This implies L >0, contradicting our supposition that L <O0.
Hence L>0.

This proof is a precise way of saying the following: If s, gets “arbitrarily close” to L
when n is “large,” and L <0, then s, <0 for sufficiently large n.

Exercises 2.2

1. If {s,}-, is a sequence of real numbers, if s, <M (n€I), and if lim
prove L < M.
2.If LER, M ER, and L< M+ ¢ for every e >0, prove L< M.

3. If {s,}_, is a sequence of real numbers and if, for every € >0,

s =1L,

n—oo “n

|s,— L|<e (n>N)

where N does not depend on €, prove that all but a finite number of terms of {s,}%_,
are equal to L.
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4. (a) Find N €1 such that

(b) Prove lim,_, 2n/(n+3)=2.
5. (a) Find N&€I so that 1/Vn+1 <0.03 when n> N.
(b) Prove that lim,_1/Vn+1 =0.
6. If 6 is a rational number, prove that the sequence {sinn!f7}%_, has a limit.
7. For each of the following sequences, prove either that the sequence has a limit or
that the sequence does not have a limit.
}12 o
@) { n+5 }n=,'

3n )
®) { n+7n'/? }n=l
3n ©
(© { n+7n? }n“—'l‘
8..(a) Prove that the sequence {107/n}%_, has limit 0.
(b) Prove that {n/107}*_, does not have a limit.
(c) Note that the first 107 terms of the sequence in (a) are greater than the
corresponding terms of the sequence in (b). This emphasizes that the existence of
a limit for a sequence does not depend on the first “few” (“few” = “any finite
number”) terms.
9. Prove that {n—1/n};>_, does not have a limit.
10. If 5,=5"/n!, show that lim,_, s, =0. (Hint: Prove that s, <(5°/5!)(5/n) if n>5.)
11. If P is a polynomial function of third degree,

P(x)=ax*+bx*+cx+d  (a,b,c,d,xER),

prove that

P(n+1) 3

lim,_,, Py

2.3 CONVERGENT SEQUENCES

2.3A. DEFINITION. If the sequence of real numbers {s,}%_, has the limit L, we say that
{s,} =1 1s convergent to L. If {s,}%_, does not have a limit, we say that {s,};, is

divergent.

From the examples of the last section we see that the sequences 1,1,1,... and
1,1,1,... are convergent (to the limits 1 and 0, respectively) and that the sequences
1,2,3,... and —1,+1,—1,+1,... are divergent.

We now prove that a sequence cannot converge to more than one limit.

2.3B. THEOREM. If the sequence of real numbers {s,}¥_, is convergent to L, then
{s,} =1 cannot also converge to a limit distinct from L. That is, if lim,_ s,=L and
lim =M, then L=M.

n—»oosn
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PROOF: Assume the contrary. Then L## M so that [M — L|>0. Let e={|M—L|. By
the hypothesis lim = L there exists N, €[ such that

n— oo n
|s,— L|<e (n>N)).

= M there exists N2€ I such that

|sn - M’ <e (n N2)
Let N=max(N,,N,). Then N > N, and N > N, so that both |sy— L| and |sy — M| are
less than €. Thus,

|M = L|=|(sy = L) = (sy = M)| <[sy = L|+|sy — M| <2e=|M — L|,

which implies |M — L|<|M — L|. This contradiction shows M= L, which is what we
wished to show.

Similarly, since lim

n—oo n

The next result is almost obvious. In fact it is obvious, so the proof is left to the reader.

2.3C. THEOREM. If the sequence of real numbers {s,}>_, is convergent to L, then any
subsequence of {s,}:>_, is also convergent to L.

There is a useful corollary.

2.3D. coroLLARY. All subsequences of a convergent sequence of real numbers con-
verge to the same limit.

PROOF: If the sequence S converges to L then, by 2.3B, S converges to no other limit.
By 2.3C, then, all subsequences of S converge to L (and to no other limit).

This corollary yields an easy proof that S={(—1)"}%_, is divergent. For both
I,1,1,... and —1,—1,—1,... are subsequences of S and converge to different limits.

The example {(— 1)"};‘,°=l shows that a divergent sequence may have a convergent
subsequence. The example™ {n}_, shows that a divergent sequence need have no
convergent subsequence. N '

Here are some more examples. If # is a rational number, 0<#<1, and S=
{sinnfm}>_,, then S is divergent. For we can write §=a/b where a and b are integers
and b>2. The terms of S for n=5b,2b,3b,... are sinam,sin2aw,sin3an,.... Thus S
contains the subsequence 0,0,0,.... But the terms of S for which n=b+1,2b+1,3b+
1,... are sin(aw+ aw/b),sinRQaw + aw /b),sin(3awr+ an/b),... or (—1)?sinCaw/b),(—
1)*sin(am / b),(— 1)**sin(an /b),... . These terms all have absolute value sin(aw/b) and
hence do not approach 0. Thus S contains a subsequence which has the limit 0 and a
subsequence which (may or may not converge but certainly) does not have the limit 0.
By 2.3D, S is divergent.

For §=0 or §=1 the sequence {sinnfr}_, is clearly convergent to 0.

It may be shown that if @ is irrational, then {sinnf7}$_, is divergent. This, however, is
somewhat more difficult.

Exercises 2.3
1. For any a,b € R show that
[la] = 181] <la=bl.
Then prove that {|s,|}-, converges to |L| if {s,}5-, converges to L.
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2. Give an example of a sequence {s,}%_, of real numbers for which {|s, |}, converges
but {s,}>_, does not.
. Prove that if {|s,|}5_, converges to 0, then {s,}_, converges to 0.
4. Can you find a sequence of real numbers {s,}5_, which has no convergent sub-
sequence and yet for which {|s,|}¥_, converges?
5. If {s,}_, is a sequence of real numbers and if

w

hm Sym=1L, hm 1 Sym—1=L,

prove that s,— L as n—oco. (That is, if the subsequence of {s,}>_, of terms with even
subscripts converges to L, as well as the subsequence with odd subscripts, then
{s,}>_, converges to L also.)

2.4 DIVERGENT SEQUENCES

From the examples in Section 2.3 we see that the sequences {n}5_, and {(—1)"}-,
are both divergent. As we have observed before, however, these sequences behave very
differently. For {n}J_, diverges because.its terms get “too big,” whereas {(—1)"}}_;
diverges because its terms “oscillate too much.” In this section we make a classification
of divergent sequences.

24A. DEFINITION. Let {s,}%_, be a sequence of real numbers. We say that s,
approaches infinity as n approaches infinity if for any real number M >0 there is a
positive integer N such that

s,>M  (n>N).

n

In this case we write s,—>00 as n—oc0. Instead of “s, approaches infinity” we sometimes
say {s,}n= diverges to infinity.

Just as we think of € in definition 2.2A as being “small,” we think of the M in this
definition as being “large.” Thus if 5,—>00 as n—oc0, then all but the first “few” of the s,
are “large.”

It is obvious that {n}_, diverges to infinity. For given M >0, just choose N € I such
that N > M. Then certainly

n>M  (n>N).

The reader should be sure to verify that if s,—>00 as n—c0, then s, definitely does not
approach a limit. (This justifies our use of the phrase “diverges to infinity.”) We never
refer to “infinity” as a limit of a sequence. A limit of a sequence must be a real number.

2.4B. DEFINITION. Let {s,}_, be a sequence of real numbers. We say that s, ap-
proaches minus infinity as n approaches infinity if, for any real number M >0, there is a
positive integer N such that

5, <—M (n>N).

We then write s,—— o0 as n—c0 and say {s,}_, diverges to minus infinity.
Again we thmk of M as “large” so that — M is “large negative.”

For example, the sequence {log(l/n)}%_, diverges to minus infinity. To prove this,
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given M >0 we must find N €1 such that
log%<—M (n>N). (D)

But this is equivalent to
logn>M (n>N),

n>eM  (n>N). ()

Thus if we choose N > e, then (2) and hence (1) will hold.

The sequence 1,—2,3, —4,... does not approach either infinity or minus infinity.
However, this sequence has the subsequence 1,3,5,... which approaches infinity and
also has the subsequence —2, —4, —6,... which approaches minus infinity.

It is easy to show that if the sequence {s,};>_, diverges to infinity, then so does any
subsequence of {s,}5_,. (This is analogous to the result of 2.3C.)

Some divergent sequences neither diverge to infinity nor diverge to minus infinity—
they “oscillate.”

2.4C. perFINITION. If the sequence {s,}5_, of real numbers diverges but does not

n=1

diverge to infinity and does not diverge to minus infinity, we say that {s_}%_, oscillates.
g y g y nSn=1

An example of a sequence which oscillates is {(—1)"};"_,. Another example is the
sequence 1,2,1,3,1,4,1,5,.... For, by 2.3D, this sequence diverges since it has the
divergent subsequence 1,2,3,4,.... Moreover, the sequence does not diverge to infinity
since there is no N €7 for which the statement

5, >2 (n>N)
is true. The sequence obviously does not diverge to minus infinity. Hence it oscillates.
We emphasize that “oscillate” does not mean “the terms go up and down.” The
sequence 1, — %, + 1, —4,... converges to zero. Hence, by definition, it does not oscillate
even though its terms “go up and down.” Oscillate is a term applied only to certain

divergent sequences. Roughly speaking, a sequence oscillates if its terms “go up and
down too much.”

Exercises 2.4

1. Label each of the following sequences either (4) convergent, (B) divergent to infinity,
(C) divergent to minus infinity, or (D) oscillating. (Use your intuition or information
from your calculus course. Do not try to prove anything.)

(a) {sin(nm/2)}%_,. (b) {sinn7}¥_,.
(© {e")oi=1 @) {e""}r.
(e) {nsin(w/n)}3_ ;. (0 {(=D"tan(z/2—-1/n)}7_,.
(8 (1+3+3+-+1/n}7,. (h) {=n?}7_,.

2. Prove that {Vn }2_, diverges to infinity.

n=1
3. Prove that {Vn+1 —Vn }¥_, is convergent. (Hint: Recall how to find dy /dx by the

Ax process when y=Vx .)
4. Prove that if the sequence of real numbers {s,}5_, diverges to infinity, then { —s,}7_,
diverges to minus infinity. ’
Suppose {s,}_, converges to 0. Prove that {(—1)"s,}_, converges to 0.
Suppose {s,} 7, converges to L#0. Prove that {(—1)"s,}5_, oscillates.
7. Suppose {s,}_, diverges to infinity. Prove that {(—1)"s,}5_, oscillates.

AN
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2.5 BOUNDED SEQUENCES

Recalling that a sequence of real numbers {s,}5_, is a function from / into R, we see

oo

that the range of {s,}>_, (namely {s,,s,,...}) is a subset of R.

2.5A. DEFINITION. We say that the sequence {s,};-, is bounded above if the range of
{5, is bounded above (see 1.7A). Similarly, we say that {s,}5_, is bounded below or
bounded if the range of {s,}-; is respectively bounded below or bounded.

Thus {s,}>_, is bounded if and only if there exists M € R such that
ls,|] <M  (n€l).

If a sequence diverges to infinity (or to minus infinity) the sequence is not bounded.
(Verify.) A sequence that diverges to infinity must, however, be bounded below. (For
such a sequence can have only a finite number of negative terms.)

An oscillating sequence may or may not be bounded. The sequence 1, —2,3, —4,...
oscillates and is neither bounded above nor bounded below. The sequence —1,1,
—1,1,... oscillates and is bounded. The sequence 1,2,1,3,1,4,... oscillates and is
bounded below but is not bounded above.

2.5B. THEOREM. If the sequence of real numbers {s,}5_, is convergent, then {s,}5-, is
bounded.

PROOF: Suppose L=Ilim,_ s,. Then, given e=1, there exists N € I such that

ls,— L|<1 (n>N).
This implies
s,| <|L|+1 (n>N). (1)

(For [s,|=|L+(s,— L)| <|L|+]|s, = L]|)
If we let M =max{|s,|,|s,),...,|sy_,|}, then we have

|s,| <M+|L|+1 (nel),

which shows that {s,}7°_, is bounded.

Thus in summary, all convergent sequences are bounded; all sequences diverging to
infinity (or minus infinity) are not bounded; some oscillating sequences are bounded and
some are not.

FExercises 2.5 /

1. True or false? If a sequence of positive numbers is not bounded, then the sequence
~diverges to infinity.
2. Give an example of a sequence {s,};~; which is not bounded but for which
lim,_ s,/n=0.
. Prove that if lim,_, s,/n= L0, then {s,}-, is not bounded.
4. If {s,}_, is a bounded sequence of real numbers, and {7,};., converges to 0, prove
that {s,2,}_, converges to 0.
5. If the sequence {s,}, is bounded, prove that for any € >0 there is a closed interval
J C R of length € such that s, €J for infinitely many values of n.

w
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2.6 MONOTONE SEQUENCES

In the preceding section we saw that a sequence may be bounded and still not be
convergent. In this section we consider a condition which, together with boundedness,
will ensure that a sequence is convergent.

2.6A. DEFINITION. Let {s,};°_, be a sequence of real numbers. If 5, <s,<--- <3,
<$,41< -+, then {s,}7_, is called nondecreasing. Similarly, if s,>s,> -+ >5,>5,,,

, then {s,}>_, is called nonincreasing. A monotone sequence is a sequence which is
either nonincreasing or nondecreasing (or both).

The sequence 1,11,123,1%,... (that is, {2—1/2""'}*_)) is nondecreasing (and
bounded). The sequence {n}5_, is nondecreasing (and not bounded). These sequences
exemplify the results of the next two theorems, the first of which (2.6B) is of tremendous
importance.

2.6B. THEOREM. A nondecreasing sequence which is bounded above* is convergent.

PROOF: Suppose {s,}_, is nondecreasing and bounded above. Then the set
A={5,55...}
is a nonempty subset of R which is bounded above. By 1.7D this set has a lL.u.b. Let
M=1lu.b.{s,,s,,...} =Lu.b. for 4.

We will prove that s,—M as n—co0. Given € >0 the number M — € is not an u.b. for 4.
Hence, for some N € I,sy, > M — €. But, since {s, }; is nondecreasing, this implies

s, >M—¢ (n>N). €))
On the other hand, since M is an u.b. for 4,
M>s, (nel).

From (1) and (2) we conclude
|s,—M|<e (n>N).

This proves lim,_, s, = M which is what we wished to show.

n—ootn

For example, the sequence {2—1/2""'}%_, converges to 2.

Theorem 2.6B is our first important application of the least upper bound axiom 1.7D.

Theorem 2.6B gives us our first set of criteria that will enable us to prove that a
sequence converges without first guessing its limit. Here is an interesting application.

2.6C. coroLLARY. The sequence {(1+1/n)"}%_, is convergent.

PROOF: Lets,=(1+1/n)". By the binomial theorem

~ 1 n(n=1) n(n=1)---1

S A T M

For k=1,...,n, the (k+ 1)st term on the right is
n(n=1)---(n—k+1)

1-2-- -k Tk

* A nondecreasing sequence {s,}5_, is always bounded below (by s,).
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which equals

el H-2)-(-452)

If we expand s, ,, we obtain n+2 terms (one more than for s,) and, for k=1,...,n, the

l 2 k n+ 1 n+ 1 n+ 1

which is greater than or equal to the quantity (1). This shows that s,<s,,, (that is,
{s,}>_, is nondecreasing). But also,

s<l+l+ by L oy 1

-2 7 1-2:3 1-2--n
<l+l+t+ Lyl
2 22 2n—l
1-(1)"
U € AU Y

-1 -1

Thus {s,}°_, is bounded above (by 3). Hence, by theorem 2.6B, {s,}%_, is convergent.

It is customary to denote lim,_, s, by e. That is,
- L 1y
e—nlergc(l+n). )

The proof of 2.6C shows that 2 < e <3. (Actually this number e, familiar from calculus, is
a transcendental number whose decimal expansion is 2.718: - -.)

We know that a convergent sequence is bounded (2.5B). Therefore we know that an
unbounded sequence is divergent. It seems intuitively obvious that a nondecreasing
sequence does not oscillate. This would imply that an unbounded nondecreasing
sequence must diverge to infinity. This we now prove.

2.6D. THEOREM. A nondecreasing sequence which is not bounded above diverges to
infinity.

PROOF: Suppose {s,}y-, is nondecreasing but not bounded above. Given M >0 we

n=1

must find N € I such that
s, >M (n>N). (H

Now, since M is not an upper bound for {s,,s,,...} there must exist N €/ such that
sy > M. Then, for this N, (1) follows from the hypothesis that {s,}5_; is nondecreasing.
This proves the theorem.

The proof of the following theorem follows the proofs of 2.6B and 2.6D exactly, with
all upper bounds and least upper bounds replaced by lower bounds and greatest lower

bounds. We leave the details to the reader.

2.6E. THEOREM. A nonincreasing sequence which is bounded below is convergent. A
nonincreasing sequence which is not bounded below diverges to minus infinity.

2.6F We close this section by showing that monotone subsequences always occur.
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THEOREM. Let S={s,}%_, be a sequence of real numbers. Then S has a monotone
subsequence.

PROOF: Let T, be the sequence s. Let T, denote the sequence s,, s3, 54,... . Indeed, for
each n€1, let T, denote the sequence s,, $,., S,42 ... We divide the proof into two
cases.

cask 1. Suppose every sequence T, has a greatest term. Let s, be the greatest term in
the sequence 7. (If there is more than one greatest term, pick any one for s, .) Let s, be
the greatest term in the sequence 7, .. Then n,>n, and s, <s, . Let s, be the greatest
term in the sequence 7, .. Then ny>n, and s, <s, . Continuing in this fashion we can
construct {s, }72 ,—a nonincreasing subsequence of S.

case II.  If case I does not hold, then for some n, € /, the sequence 7, has no greatest
term. Since s, is a term of 7, , there is a term s, of 7, that is greater than s, . Then there
is a term s, w, OF T, that is greater than s, . Moreover, we may pick s, with n3> n, (why?).
Continuing in thlS fashion, we can construct a nondecreasing subsequence {8, }5=1 0f S.

Hence in either case, S has a monotonic subsequence, and the proof is complete.

Exercises 2.6

1. Which of the following sequences are monotone?
(@) {sinn}7 ;. (b) {tann}7_,.

© (=7 @ {2n+ (=17,

n=1
2. If {s,}-, is nondecreasing and bounded above, and L=Ilim,_ s, prove that
s, < L(nel).
Formulate the corresponding statement for nonincreasing sequences.
3. If {s,}., and {¢,)%_, are nondecreasing bounded sequences, and if s, <1, (n€T),
prove that lim,_, s, <lim,_ t,.

4. Find the limit of {n™"(n+1)"}3_,.
5. If 5,=10"/n!, find N €1 such that

Spa1<S$, (n>N).

6. For nel, let

1-3-5---(2n—-1)
W= T246 - 2n
Prove that {s,}°_, is convergent and lim,,_, s, <3.

7. For nel, let

s = 2:4-6---2n 1
" 1-3-5 (2n—l)n

Verify that s, >s,>s;. Prove that {s,}_, is nonincreasing.
8. Let

_ 1424 +n

n
n2

(nel).

Show that {s,}>_, is monotone and bounded, and that lim

=1
n—»oon 2
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9. Let {s,}-, be a sequence of real numbers, and let
Si+Hsy+ -+,
t,=—— (n€l).
n
If {s,}~, is monotone and bounded, show that {z,}5_, is monotone and bounded.
10. For n€1, let
t,=1+ —1— + % +--0+ % .
(a) Prove that {z,}%_, is nondecreasmg.
(b) Using only facts established in the proof of 2.6C, prove that {#,}5_, is bounded
above and then prove that lim,_ ¢, >1lim,  (1+1/n)".

11. Let £ denote the class of all sequences of real numbers. Let € denote the class of all
convergent sequences and ) the class of all divergent sequences. Further let 9,
and 9,, denote the classes of sequences that diverge to (plus) infinity and minus
infinity, respectively. Let O denote the class of oscillating sequences. Finally, let %
denote the class of all bounded sequences and let 9L denote the class of all
monotone sequences.

By citing the proper difinitions or theorems, verify the following statements.
@ L=Cu9PD.
(b) D=DpuUDyuU0.
) CcR.
d MNB cC.
(€ MNB'CDpU Doy .
) BND,=0.

2.7 OPERATIONS ON CONVERGENT SEQUENCES

Since sequences of real numbers are real-valued functions, the definition of the sum,
difference, product, and quotient of sequences follows from definition 1.4B. Thus if

{s,}n=1 and {z,}7_, are.sequences of real numbers, then {s,}5_,+{7,}%-, is the
sequence {s, + ¢ }n_l, and {s,}_ ;- {1,}>-, is the sequence {s,,}5-,, and so on. Also, if
CER, then c¢{s,}5_, is the sequence {cs,} %

From the next theorem it follows that the sum of two convergent sequences is
convergent.

27A. THEOREM. If {5}, and {t,}>, are sequences of real numbers, if lim,_, _s,=L,
and if lim,_, ¢, = M, then lim,_ (s, + ,)= L+ M. In words, the limit of the sum (of two

n— oo

convergent sequences) is the sum of the limits.
PROOF: Given € >0 we must find N €I such that
(s, +2,)—(L+M)|<e (n>N). 0))

Now |(s,+1,)—(L+ M)|=|(s,— L)+ (t,— M)|<|s,— L|+|t,— M|. Hence (1) will
certainly hold if

|s,— L|+|t,— M|<e (n>N). (2)

We thus try to make both |s,— L| and |¢,— M| less than €/2 by taking n sufficiently
large.
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Since lim,,_, s, = L, there exists N, € such that
|s,,—L|<— (n>N)).
Also, since lim,_, t,= M, there exists N, € I such that
|t,,—M|<§ (N,E1).
Hence if we let N=max(N,,N,), then the terms on the left of (2) are each less than €/2
when n> N. Thus for this N, (2) and hence (1) hold and the proof is complete.

The next theorem is easier to prove.

2.7B. THEOREM. If {s,}_, is a sequence of real numbers, if c ER, and if lim,_ s, =L,
then lim,_,  cs,=cL.

PROOF: If ¢=0, the theorem is obvious. We therefore assume ¢#0. Given ¢ >0 we
must find N €7 such that

les, —cL|<e (n>N). €))
= L, there exists N € such that

s,— L <= n>N

s LI<g

Now, since lim

n—oo n

But then
le|-]s,— L|<e (n>N),

which is equivalent to (1).
Theorem 2.7B is used in the proof of the following useful result.

2.7C. THEOREM. (a) If 0<x <1, then {x"}%_, converges to 0. (b) If 1 <x< oo, then
{x"}>_, diverges to infinity.

PROOF: (a) If 0<x<1, then x"*'=x-x"<x". Hence {x"}%_, is nonincreasing.
Since x" >0 for n€ 1, {x"};_, is bounded below. By 2.6E, {x" } _, is convergent. Let
L=lim,_x". From 2.7B (with c¢=x) it follows that lim,_  x-x" —xL That is,

n—oo

{x"*1y®_| converges to xL. But {x"*'}2_, is a subsequence of {x" . By 2.3D,
L=xL and so L(1—x)=0. Since x# 1, this shows L 0, and part (a) if proved
(b) If x>1, then x"*!'=x-x">x" so that {x"}%_, is nondecreasing. We will show

that {x"}5_, is not bounded above. For if {x"}°°_, were bounded above, then by 2.6B
{x"}r_, would converge to some L € R. But the same reasoning as in (a) would show
that L= Lx, so that L=0=Ilim,_ x". But x">1 and so {x"}7_, obviously cannot
converge to 0. This contradiction proves that {x"}:°_, is not bounded above. Conclusion
(b) follows from 2.6D.

We now treat the limit of the difference of two convergent sequences.

2.7D. THEOREM. If {s,}7_, and {¢,}_, are sequences of real numbers, if lim, _,_s,=L,
and if lim = M, then lim s,—t,)=L—M.

n—oo n n—»oo(

PROOF: Since lim =M, it follows from 2.7B (with ¢= —1) that lim,__(—1t,)

n— o0 lt
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= — M. But then, using 2.7A (at the second equals sign),
nlig)lo (s,—t)= nango [s,+(—=1)]= nli)n(}osn+ nango(— t)y=L+(—-M)=L-M,
which is what we wished to prove.

A useful consequence of 2.7D and 2.2B is the following.

2.7E. coroLLARY. If {s,}°_, and {z,};-, are convergent sequences of real numbers if
s, <t (nel),

n

s =L, lim t, =M, then L< M.

n—oon n—oo'n

and if lim

PROOF: By 27D, M- L=Ilim,_ (t,—s,). But ¢,—s,>0(n€I). Hence by 2.2B,

M — L >0, which establishes our result.

This corollary, of course, remains true even if s, > ¢, for a finite number of values of n.

We now show that the limit of the product of two convergent sequences is the product
of their respective limits. We give two proofs of this result; each uses a technique useful
in many other contexts. The first proof requires a lemma.

27F. LemMA. If {s,}_, is a sequence of real numbers which converges to L, then
{s2}*_, converges to &2

s?= L2 That is, given € >0 we must find N €I such

n—oo™n

PROOF: We must prove lim
that
|si—L}<e (n>N)
or, equivalently,
|s,— L||s,+L|<e (n>N). (1
Now, by 2.5B {s,}>_, is bounded. Thus for some M >0
|s,| <M (nel),

so that
s, + L|<|s,|+|L|<M+]|L| (nE€l). (2)
Since lim,_, s, = L, there exists N € ] such that
>N).
= L<yrem (M) (3)

But then, using (2) and (3),
ls,—L|-|s,+L|<

M+|L| “(M+|L))=¢ (n>N).

Thus for this N, (1) holds and the proof is complete.

2.7G. tHEOREM. If {i5,}7°, and {¢,}77_, are sequences of real numbers, if lim,_, s, =L,
and if lim,_ t,=M, then lim,_ s,t,=LM.

n—oo'n n—oo n'n

FIRST PROOF: We use the identity

b=4[(a+b)~(a=b)’]  (a,bER). )
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Now, as n—o0,
s,+t,—>L+M  by27A,
(s,+1,)*>(L+M)*  by27F; ()
also
s,—t,—~>L—-M by 2.7D,
(s,—t,)*>(L—M)*  by2.7F. 3)
From (2), (3), and 2.7D,
(s,+ 2,2 — (s, — 1,)’>(L+ M)’ —(L—M)*=4LM. 4)
Finally, using (1), (4), and 2.7B,
Suln =4[ (Sa+ 12)* = (5,— 1,)* ] > §(4LM )= LM.

Note that this proof uses no €. The technique of using the identity (1) to deal with the
product is called polarization.

SECOND PROOF: Given € >0 we must find N €] such that
|s,t, — LM| <€ (n>N). €))
The problem here is to do something algebraic [as we did in going from (1) to (2) of
2.7A] that will enable us to use our hypotheses lim,_ s,=L and lim,_ t,= M. The

n—oo n—oo'n

trick of adding and subtracting the same quantity (in this case Lt,) will be used many
times in this book.
We have

St,— LM=s,t,— Lt,+ Lt,— LM=1t,(s,— L)+ L(t,— M),
|Satn = LM| <[t |5, = LI+ |L]]t,— M|.
Hence (1) will certainly hold if
6] 85 = LI+ | L] [t,= M|<e  (n>N). )
By 2.5B, {t,}y-, is bounded, so that |7,|<Q(n€I) for some Q >0. Then (2) will

n=1|

certainly hold if
Qls,— LI+[L||t,-M|<e  (n>N). ®)
Thus if we choose N, € so that
Q|5n—Ll<§ (n>Ny),
and choose N, € I such that
LI, =M|<3  (n>N)),

then (3) will hold for N =max(N,,N,). Hence (2) and finally (1) will hold for this N, and
we are done.

Now we turn our attention to the quotient of convergent sequences.

t = M where M+#0,

n—oo'n

27H. Lemma. If {¢,}°_, is a sequence of real numbers, if lim
then* lim,_ (1/¢,)=1/M.

* The hypothesis implies that 7, can be equal to zero for at most a finite number of #. Thus 1/1, is defined
for all but at most a finite number of n.
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PROOF: Either M >0 or M <0. We will prove the lemma in the case M >0. (The case
M <0 can be proved by applying the first case to {—1¢,}7-;.)
So we assume M >0. Given € >0 we must find N €I such that

tl—% <e (n>N),
or ‘
|2, — M|
| (n>N). (1)
n

Now there exists N, € I such that |t,— M|<M /2 (n> N,). This implies
LA (> ).

In addition, there exists N, € I such that

|z,,—M|<%E (n> N,).
Thus if N=max(N,,N,), we have, for n> N,
ltn—M| _ 1 o= M| < —L_ M
[LM] " Te,M] M2 2

Hence (1) holds for this N. This completes the proof.

2.71. THEOREM. If {5,}5_, and {¢,}°_, are sequences of real numbers, if lim,_s,=L,
and if lim,_ ¢,= M where M #0, then lim,_, (s,/t,)=L/M.

n—oo'n

PROOF: Using 2.7H and 2.7G we have

which is what we wished to show.

2.7]J. 1In Section 1.9 we proved directly from the definition of limit that

lim —2" . —
n—o0 p44p!/?

We now do a similar problem illustrating the results of this section.

PROBLEM: Prove

First we write
3n’—6n _ 3-6/n
5n*+4  5+4/n%

We proved in Section 1.9 that lim,_ . (1/#7)=0. Hence

lim $=6.0=0 by27B.
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We also proved in Section 1.9 that lim,_,  1=1. Hence

nlirgo 3=3 by2.7B.

Then
}@g(3—2)=3—0=3 by 2.7D. (1)
Since we know lim,_ ., (1/n)=0, we have
lim - = lim 1. lim £=0.0=0  by27G.
n—w p n—o B n—oo N
Thus
.4
lim — =0 by 2.7B
n—oo n2
Reasoning as before, we conclude
. 4
hm(5+—3)=5+0=5 by 2.7A. )
n—oo n

But then, from (1), (2), and 2.71,

3-6/n ~ lim (3—6/n)

n—oo

. 3
lim ==,
n—e 5+4/n Jim (5+4/n%) 5

which is what we wished to show.

Exercises 2.7

1. Prove
. 2n3+5n _
@ "ll’rg’ 4n3 + n? -

() lim —2——=
=% (n—7)2—6
2. Prove that if {s,}%_, converges to 1, then {s5!/2}®_, converges to 1.

Evaluate lim,_ ,Va (Vn+1 —Vn).

4. Suppose {s,}n-; is a sequence of positive numbers and 0<x<I1. If s,,,<xs,

(N7

w

(n€l), prove lim,_,_s,=0.
5. Suppose
s,— 1
lim =0.
n—ow s, + 1
Prove lim,_, s,= 1. [Hint: Lete,=(s,—1)/(s,+ 1) and solve for s,.] Which theorems

from this section did you use?
6. Prove that lim,__ (1+1/n)"*'=e. Also, prove that

n—oo n+1

lim [1+L} =e.

Which theorems from this section did you use?
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7. Using the identity 1+2/n=[1+1/(n+ 1)](1+ 1/n), prove that

lim (1 + 2) =e?.
n—oo n
8. If ¢> 1, prove that lim,_,_c'/"=1. [Hint: Write c!/"=1+s, and take the nth power
of both sides to show that {ns Yo=1is bounded Then conclude that s,—0 as n—0.]
9. Lets,=V2 and lets,,,=V2-Vs, forn>
(a) Prove, by induction, that s, <2 for all n.
(b) Prove that s, >s, for all n.
(c) Prove that {s,}5_, is convergent.
(d) Prove that lim,_, s, =2.
10. Suppose s, >s,>0, and let s, , = 3(s, +5,_,) (n>2). Prove that
(a) s,,83,5s,... 1S nonincreasing,
(b) $,,54,5,... is nondecreasing,
(©) {s,}-1 is convergent.
11. If r,<s,<t, for all n€ I, and if both {r,}>_, and {1,};_, converge to s, prove that
{5,}%_, converges to s. '

2.8 OPERATIONS ON DIVERGENT SEQUENCES.

In the preceding section we saw that the sum, difference, product, and quotient (if
defined) of convergent sequences are again convergent. No such statement can be made
in general about divergent sequences. Indeed, if {s,}i_, is a divergent sequence, then
{—s,}>_, is also divergent, and the sum of these two sequences is clearly not divergent.
Moreover, the product of the divergent sequence {(— 1)"}5_, with itself is not divergent.

For sequences that diverge to infinity, however, some positive results can be proved.

2.8A. THEOREM. If {s,}%_, and {1,}_, are sequences of real numbers that diverge to
infinity, then so do their sum and product. That is, {s,+1¢,}x_, and {s,¢,}—, diverge to
infinity.

PROOF: Given M >0, choose N, €I such that

s, >M (n>N)),
and choose N, €[ such that
r,>1 (n>N,).

(The above is possible since both s,—>00 and 7,—00 as n—c0.) Then, for N=max(N,,N,)
we have

) S, +t,>M+1>M (n>N),
and
s,t,>M-1=M (n>N).

Since M was an arbitrary positive number, this proves the theorem.

2.8B. THEOREM. If {s,}3_, and {t }¥_, are sequences of real numbers, if {s,}5-,
diverges to infinity, and if {¢,}%_, is bounded, then {s,+1,}_, diverges to infinity.
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PROOF: By hypothesis there exists Q >0 such that
|2.]< Q (nel).

Given M >0 choose N €I such that
s;,>M+Q (n=N).
Then, for n> N,
S+, >8,— || >(M+Q)—0=M.
That is,
s, +t,>M (n>N),

which shows that s, + 1, as n—o0.

2.8C. coroLLARY. If {s,}2_, diverges to infinity and if {#,}_, converges, then {s,+

n=1 n=1

t,}-, diverges to infinity.
PROOF: The proof follows directly from 2.5B and 2.8B.

It is easy to show that 2.8A, 2.8B, and 2.8C remain true if “infinity” is replaced by
“minus infinity.”

2.8D. Almost any kind of sequence can be formed from the sum of two properly
chosen oscillating sequences. For example, the sum of the oscillating sequences
0,1,0,2,0,3,... and 1,0,2,0,3,0,... is the sequence 1,1,2,2,3,3,... which diverges to
infinity. The sum of the oscillating sequences 1,0,1,0,1,0,... and 0,1,0,1,0,1,... is a
convergent sequence. The sum of an oscillating sequence and itself is oscillating.

Exercises 2.8

1. Give an example of sequences {s,}>_, and {¢,}5_, for which, as n— o0,
(a) s,—>o0, t,—>—0, s, +,—>00,
(b) s,—>x, t,>0, s,—t,—>7.

2. Suppose that {s,};, is a divergent sequence of real numbers and c € R, ¢#0. Prove
that {cs,}_, diverges.

3. True or false? If {s,}5_, is oscillating and not bounded, and {z,}-, is bounded, then

n=1 n=1

{s,+1,}5_, is oscillating and not bounded.

n=1

2.9 LIMIT SUPERIOR AND LIMIT INFERIOR

If {s,}%_, is a convergent sequence, then lim,_ s, measures, roughly, “the size of s,
when n is large.” Of course, lim,_ s, is a concept used only in connection with
convergent sequences. In this section we introduce the related concepts of limit superior
and limit inferior which can be applied to all sequences. Roughly, the limit superior of a
sequence {s,}%_, is a measure of “how big s, can be when n is large,” and the limit
inferior or {s,}%_, is a measure of “how small s, can be when n is large.” If lim,_, s,
exists, it is then plausible that the limit, limit superior, and limit inferior of {s,};_, are
all equal, and this turns out to be the case. The real application of limit superior and

limit inferior, however, is to sequences which are not known to be convergent.
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2.9A. First let us consider a sequence {s,}%_, that is bounded above—say
<M (n el )

Then, for fixed n€ 1, the set {s,,,s,, +1>Sn42-+-} 1s clearly bounded above and hence
(1.7D) has a least upper bound

M, =1u.b.{s,,5, 4 1»Sns2-+- }- (1

Moreover, it is easy to see that M, > M, , since M, ,=l.u.b. {s,,H, 2 } is the Lu.b.
of a subset of {s,,s,,,5,42...}. Thus the sequence {M,}_, is nonincreasing and thus
either converges or diverges to minus infinity.

DEFINITION. Let {s,}°_, be a sequence of real numbers that is bounded above, and let
M,=lub. {s,,8, 1sS442--}

(a) If {M,}_, converges, we define lim sup,_, s, to be lim, M,
(b) If {M,}_, diverges to minus infinity we write '

lim sups,= — 0.
n—oo

For example, let s,=(—1)" (n€[). Then {s,}_, is bounded above. In this case
M, =1 for every n€ I and hence lim,_ M, =1. Thus lim sup,_ (- 1)"=1.

Consider next the sequence 1,—1,1,—-2,1,-3,1,—4,.... Again M,=1 for every n,
and so the limit superior of this sequence is 1.

If s,=—n (n€l), then M,=lub.{—n,—n—-1,—-n—-2,...}=—n. Hence M,—»—
as n—o0, and so lim sup,_, (—n)= — co.

2.9B. perINITION. If {s,}_, is a sequence of real numbers that is not bounded above,
we write lim sup,_, s, = o0.

Obviously, lim sup,_, n=co.

At this point the reader should verify the following statements. (1) If {s,}_, is
bounded above and has a subsequence that is bounded below by A, then lim sup,,_ms,,
> A; (2) if {s,}°_, has no subsequence that is bounded below, then lim sup,,_, . s,= — o0.

We note that changmg a finite number of terms of the sequence {s,}_, does not
change lim sup,_ s, Thus the limit superior of the sequence 10'®1,—1,1,—1,1,
-1,1,...is 1.

29C. THEOREM. If {s,}%_, is a convergent sequence of real numbers, then

limsups,= 11m S,
n—oo

PROOF: Let L=lim Then given € >0 there exists N € I such that

|s,— L|<e (n>N),

n— o0 ’l

or
L—e<s,<L+e (n>N).
Thus if n> N, then L+ ¢ is an u.b. for {s,,5,,,8,42...} and L—e is not an u.b. Hence
L—e<M,=lub.{s,,8, 1,842} <L+e
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and so, by 2.7E,
L—e< lim M <L+e.

n—co N

But lim,_ M, =limsup,_,s,. Thus

n—oo

L—e<limsups,< L+e.

n—oo

Since € was arbitrary, this implies limsup,,_, s, = L, which is what we wished to prove.
Note that we have used Exercise 2 of Section 2.2.

We now define limit inferior.

29D. If the sequence of real numbers {s,}y-, is bounded below, then the set
{$258n415Sp42---} has a gl.b. If we let

m, =gLb.{8,,8, 4 15Sp 4200+ }»
then {m,}_, is a nondecreasing sequence (verify) and hence either converges or
diverges to infinity.

DEFINITION. Let {s,}5_, be a sequence of real numbers that is bounded below, and let
m,=g.lb.{8,,8,, 1:S54+2-+}

(a) If {m,}-, converges, we define liminf, s, to be lim,_ m,.

n=1| n—oo®n n—oo

(b) If {m,}s_, diverges to infinity, we write liminf, s, = co.

n—oo

2.9E. perINITION.  If {5}, is a sequence of real numbers that is not bounded below,
we write liminf, _s,= — o0.

n—ootn

Thus liminf, | (—1)"= —1, liminf, , _n=c0, liminf, , (—n)= —oo. The sequence
1,-1,1,-2,1,-3,1, —4,... has liminf= — c0.
29F. THEOREM. If {s,}_, is a convergent sequence of real numbers, then
liminfs, = lims, .

n—oo n—oo

PROOF: The proof of this theorem is very similar to the proof of 2.9C and is omitted.

2.9G. If we make the notation convention for the symbols — oo and oo that
—oo<x (xER),
x< o0 (XER), nH
— o0 < 0,
the following theorem is easy to prove.

THEOREM. If {s,}5_, i1s a sequence of real numbers, then
liminfs, <limsups, . (2)

n—oo n—oo

PROOF: If {s,}°_, is bounded, then

n=1

m, =glb.{$,,8, 158425+ } SLUD{S,,8, 4 185425+ } =M.
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Thus m, < M, and so, by 2.7E, (2) holds. If {s,}*d,_, is not bounded, then either
limsup,_, . = oo or liminf, _s,= — oo and (2) follows from (1).
From 2.9C and 2.9F we see that if lim,_, s = L then

n—ootn

limsups, = liminfs, = L.

n— oo n—oo

We now prove the converse of this statement.

29H. tHEOREM. If {s,}7°., is a sequence of real numbers, and if limsup,_ s,
=liminf =L where LER, then {s,}7_, is convergent and lim,_, s, = L.

n—)oo ’l n—oo n

PROOF: By hypothesis we have

= limsups, = llmlub {$n>

n—>oo

Thus given € >0 there exists N, € I such that
Lub.{s,,8, 1842} — L|<e (n>N)).

Sn+15Sn+200 }

This implies

s, <L+e (n>N). )
Similarly, since liminf, s, = L, there exists N, € I such that

I8 L.b. {88, 4 1585420+ } — L| <€ (n>N,),

which implies

s,>L—¢ (n>N,). (2)
If N=max(N,,N,), then from (1) and (2) we conclude

s, LI<e  (n>N).

This proves lim,_, s,= L.

n—oo

There is a similar result on sequences diverging to infinity.

2.91. THEOREM. If {s,}*_, is a sequence of real numbers and if limsup,_s,=»
=liminf then s, diverges to infinity.

n—oo "’

PROOF: Since liminf,  _s,= 00, given M >0 there exists an N € I such that
g8lb. {884 1sSp2e-- } > M (n>N).
This implies that M is a lower bound (but not the g.l.b.) for {s,,s,, ...}, so that
s, >M (n>N),
which establishes the required conclusion.
There is an obvious analogue of 2.91 for sequences diverging to minus infinity which

the reader should formulate and prove. The converse of 2.91 is exercise 4 of this section.
We now prove a result for limit superior corresponding to 2.7E.

2.9J. THEOREM. If {s,}5_, are bounded sequences of real numbers, and if
(nel),

then limsup,_, s, <limsup,_, 7, and liminf, | s, <liminf,_ _¢,.

s, <t

n n
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PROOF: From the hypothesis s, < ¢, it is clear that
lub{ Sn+1 n+2""} Lub. {4t 5 tyszse- }s
and
glb. {881 1s8p42- } <ELL {0t s b lin-e- )

(Can you prove this?) Taking the limit as n—oc0 on both sides of these inequalities, and
using 2.7E, we prove the theorem.

Theorem 2.9J, of course, remains true even if s, > ¢, for a finite number of ».
It is not always true that
limsup (s, + ¢,) = limsups, + llmsupt
n—oo

n—oo

even for bounded sequences {s,}_, and {¢,}5_,. For example, if s,=(—1)" (n€7) and
t,=(—1)"*" (n€l), then s,+1,=0 (n€I). Here
limsups,=1= limsup¢,
n— oo n—oo

but limsup,_ (s, +1,)=0. There are, however, important inequalities that can be
proved.

29K. THEOREM. If {s,}>_, and {¢,}5-, are bounded sequences of real numbers, then

limsup (s, +¢,) < hm 1SUps, + limsup,; (a)
n—oo n—oo
liminf (s, +1,) > liminfs, + liminfz,. (b)

PROOF: (a) Let

M, =1ub.{s,,8 1 >S5420+ }>
P,=lub.{t,t, 1l 42}

Then

s <M, (k>n), <P, (k>n),

and so
S+ <M, + P, (k> n).

Thus M, + P, is an u.b. for {s,+ 4,8, 1+ 415842+ tys2s-.- }» SO that

Lub. {s,+ 1,8, 1ty 1sSpsatlysa.. <M, + P,

By 2.7E and 2.7A,

nlirglol.u.b.{s,,+t,,,s,,+l+t,,+l,s,,+2+t"+2,...} hm (M, +P,)= hm M,+ lim P,

n— oo
or

limsup (s, + ¢,) < limsups,+ limsup ¢,
n— oo n—oo

n—oo

which is precisely conclusion (a). The proof of (b) is very much the same and is left to
the reader. [Note that the inequality sign in (b) is the reverse of that in (a).]
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There are other ways to define limit superior and limit inferior. The following theorem
indicates one such approach.

29L. THEOREM. Let {s,}_, be a bounded sequence of real numbers.

1. If limsup,_, . s,= M, then for any € >0, (a) s, < M + ¢ for all but a finite number of
values of n; (b) s,> M — € for infinitely many values of n.

2. If liminf,_, s, = m, then for any €>0, (c) s, >m — ¢ for all but a finite number of
values of n; (d) s, < m+ € for infinitely many values of n.

PROOF: We prove part 2 only. If (c) were false, then, for some € >0, we would have
s, < m— € for infinitely many n. But then, for any n €1, the set {s,,8,,,5,42-.- } would

n

contain a number < m— €. This would imply
gLb. {88, 4 15842000 J SM—E€ (nel)

and, on taking limits we would obtain, by 2.7E, liminf,_ s, < m—e which contradicts
the hypothesis. Thus (c) is true. .

Now suppose (d) is false. Then, for some € >0, s, <m+ € for only a finite number of
values of n. But then there exists N €/ such that

s >m+e (n>N).
By 2.9J,

liminfs, > m+e,

n—oo

which again contradicts the hypothesis. Thus (d) is true.

Although we do not prove it, the converse of 2.9L is true. That is, if {s,}%_, is a
bounded sequence of real numbers and if M € R is such that (a) and (b) hold for every
€>0, then limsup,_,s,= M; similarly, if (c) and (d) hold for every €>0, then lim-
inf,_,_s,=m.

Using 2.9L we can prove the following useful result.

29M. THEOREM. Any bounded sequence of real numbers has a.convergent sub-
sequence.

PROOF: Suppose {s,}7_; is a bounded sequence of real numbers and let M
=limsup,_, s, We shall construct a subsequence {s, }3>~; which converges to M. By (b)
of 2.9L there are infinitely many values of n such that s,> M —1. Let n, be one such
value. That is, n, €I and 5, > M — 1. Similarly, since there are infinitely many values of n
such that 5,>M —1, we can find n, €7 such that n,>n, and s, > M — . Continuing
then, for each integer k> 1 we can find n, €I such that n, >n,_, and

1

S >M-— 7(‘ . (l)
Given €>0, by (a) of 2.9L we can find N € such that
s, <M+e (n>N). (2)

Now, choose K €1 so that 1/K<e and n,> N. Then, if k> K, we have 1/k<e and
n, > N. Hence using (1) and (2),

M—-—e<M—-1/k<s, <M+e (k> K),
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which implies
|5, — M| <e (k> K).

This proves s, —M as k—co, which is what we wished to show.

Exercises 2.9

1. Find the limit superior and the limit inferior for the following sequences.
(a) 1,2,3,1,2,3,1,2,3,....
(b) {sin(nm/D)}7- .
(©) {(1+1/n)cosnm}y_;.
(d) ((1+1/ny"),
2. If the limsup of the sequence {s,}>_, is equal to M, prove that the limsup of any
subsequence of {s,}i_, is < M.
3. If {s,}x-, is a bounded sequence of real numbers and liminf
a subsequence of {s,}_, which converges to m.
Also, prove that no subsequence of {s,}5_, can converge to a limit less than m.
4. If {s,}_, is a sequence of real numbers diverging to infinity, prove that

n=

s, = m, prove there is

n—oo

limsup s, = co = liminfs,,.
n—>00 n—oo

(This is the converse of theorem 2.91.) Formulate and prove the corresponding
statement for sequences diverging to minus infinity.

5. Write the set of all rational numbers in (0,1) as {r,r,,r3,...}. Calculate limsup,_, 7,
and liminf,_ r,.

6. Prove that if the sequence {s,}5_, has no convergent subsequence, then {|s,|}-,
diverges to infinity.

7. If {s,}>-, is a sequence of real numbers and if

R )
0,= I_Z__n_" (nel),

prove that

limsup o, <limsups,,
n—oo n—oo

and
liminf g, > liminfs,.
n—oo n—oo

(Hint: Use 2.9L))

2.10 CAUCHY SEQUENCES

The most important criterion for proving that a sequence converges without knowing
its limit is called the Cauchy criterion.

2.10A. DEFINITION. Let {s,}%_, be a sequence of real numbers. Then {s,}_, is called
a Cauchy sequence if for any € >0 there exists an N €I such that

|8, — 8, <€ (m,n>N).

Roughly, a sequence {s,}>_, is Cauchy if s,, and s, are close together when m and n
are large. First we show that a convergent sequence must be Cauchy.
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2.10B. THEQREM. If the sequence of real numbers {s,}%_, converges, then {s,}_, is a
Cauchy sequence.

PROOF: Let L=Ilim Then, given € >0, there exists an N € I such that

|sk—L|<% (k> N).

n—»oosn‘

Thus if m,n > N, we have
€ .

5= 82l = (5= L)+ (L= 5,)| <l = LI+|L=5,| <5 + 5
so that

S — 8] <€ (m,n>N),

which proves that {s,};-, is Cauchy.

Theorem 2.10B says roughly that if the terms {s,}5_, get close to “something,” then
they get close to each other. It is the converse of 2.10B that is really important. The
converse tells that, once we establish that a given sequence is Cauchy, the sequence must
be convergent. We first prove a lemma.

2.10C. THEOREM. If {s,}5_, is a Cauchy sequence of real numbers, then {s,};_, is
bounded.

PROOF: Given e=1, choose N €I such that

|8, — 5, <1 (m,n>N).
Then

|5, — syl <1 (m>N). (1)
Hence, if m > N, we have

Sl = (85— 55 + 3] <8, = S| + |5

and so, using (1)

|$,,] < T4]syl (m>N).
If M=max(|s,|,...,|sy_,|), then

[8,,] < M+ 14 |sy] (mel),

so that {s,}>_, is bounded.

n=1
2.10D. THEOREM. If {s,}7_, is a Cauchy sequence of real numbers, then {s,}5_, is
convergent.

FIRST PROOF: By lemma 2.10C we know that limsup,_ s, and liminf, s, are

n—oo-n

(finite) real numbers. By 2.9H, then, to prove the theorem it is sufficient to show that

limsups,= liminfs .
n—»oop " n—oo

>liminf,_ s,. Thus all we need

But, by the theorem in 2.9G, we know that limsup,_, s,
to prove is that

limsups, < Ii"nlg}fsn. ¢))

n—oo
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Since {s,}y~, is Cauchy, given € >0 there exists N €] such that
|sm—s,,|<§ ~(m,n>N)

and so
|sN—s,,|<§ (n>N).

It follows that sy +¢/2 and sy —€/2 are, respectively, upper and lower bounds for the
set {sN,sN+1,sN+2, .}. Hence if n>N, sN+e/2 and sy—e€/2 are upper and lower
bounds for {s,,8, 1>8,42 - } This implies, for n> N
Sy — 5 <gLb {88 1:8042-0- )

£
>
Since the left and right ends of this inequality differ by €, we must have

l.u.b.{s,,,s,,+ 15Sn+200 e } - g.l.b.{Sn,S"+ 1Sn+200- } <€

Lub. {8,841 1854200 } <ELD{S,,8, 4 1,8, 40,0.. } +E
Taking the limit on both sides and using 2.7E, we obtain

<Lub.{s,,8, 4 Syt } <SSy +

limsups, < liminfs, + €.
n—o0 n—oo

Since € was arbitrary, this establishes (1), which is what we wished to prove.

We emphasize how strongly this proof of theorem 2.10D depends on axiom 1.7D, both
in the use of L.u.b. and g.l.b. for {s,,s,,,5,.2...} and in the use of limits superior and
inferior. The existence of limsup and liminf for a bounded sequence depends on the
existence of limit for a bounded monotone sequence. This in turn depends on 1.7D. In
fact, it may be shown that 2.10D and 1.7D are equivalent. In some developments, 2.10D
is taken as the fundamental axiom and 1.7D is a theorem.

Here is a second proof of 2.10D.

SECOND PROOF: By 2.6F, {s,}7_, has a monotonic subsequence {s,}7,. By 2.10C,
{s,}- is bounded—hence (s, }j : 1s bounded. Thus {s,}72, converges to some s € R.
We will show that {s,}_, 1tse1f converges to s. Fix ¢>0. Since {s,}j=1 converges to s,
there exists J €1 such that

s, =sI<5 (V). (1)
, is Cauchy, there exists K €I such that
|sm—s,,|<—§— (m,n>K). (2)

Since {s,}5.

n=1

We may choose K so that K > J.
Now suppose k€ [ and k > K. Then k > J, so (1) implies

|S"k—S|<'2—.

Also, n, > k> K, so (2) implies
€

|sk—s,,k|<§.

Therefore
s, —s| <e (k>K)

and the theorem follows.
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We now present a famous result about the set of real numbers. It is called the
nested-interval theorem [because of hypothesis (a)].

2.10E. THEOREM. For each n€l let I,=[a,b,] be a (nonempty) closed bounded
interval of real numbers such that ‘

]13123"'31,,31"4.]:)”.7 (a)
and
"ll)ngo (b,—a,)= nll»rgo (length of 1, )=0. (b)

Then N;°_,I, contains precisely one point.

PROOF: By hypothesis (a) we have I, >/, and so a,< a,,,<b,,, <b,. This shows
that the sequences {a,}:_, and {b,}-, are respectively nondecreasing and nonincreas-
ing. Moreover, by (a) again, all terms of both these sequences lie in I, and so the
sequences are both bounded. By 2.6B and 2.6E both sequences are convergent. Let
x=lim,_, a, and let y =lim,_, _b,. Then for any n we have a, < x and y < b, (why?). But
by 2.7D and hypothesis (b) we have

y—x= lim b,— lim g,= lim (b,—a,)=0.

n—oo n—oo n—oo

Thus x=y. But then a, < b, for each n, which shows that x& n;>_,/,. Clearly, no
z#x can lie in N 2,7, since, by hypothesis (b), |z — x| is greater than the length of I, for
n sufficiently large Hence N>/, contains x and no other point, and the theorem is
proved.

2.10F. The nested-interval theorem has an important generalization which we discuss
in Chapter 6. This generalization is proved with Cauchy sequences. Therefore, it will be
very instructive for the reader to give a different proof of 2.10E using the information
from this section on Cauchy sequences. We give the outline of such a proof.

1. Show that, for any N € I, the points aN,a,;,+,aN+2,... all lie in 1.
2. Use hypothesis (b) to infer that {a,}%_, is Cauchy.

3. Then {a,};_ is convergent (why?).

4. Similarly {b,,}‘,’,"‘=1 is convergent.

5. The rest of the proof is the same as in 2.10E.

Exercises 2.10

L If {s,}5- isa Cauchy sequence of real numbers which has a subsequence converging
to L, prove that {s,}°_, itself converges to L.
2. For each n€1 let s,=1+ 3+ -+ + 4. By considering s,,—s,, prove that {s,}%_, is
not Cauchy.
. Prove that every subsequence of a Cauchy sequence is a Cauchy sequence.
4, Let {s,}-, be a sequence of real numbers. If cE R,0<r< 1, and

—s,|<er” (nel),

w

isn+l

show that {s,}5_, converges.

5. Find a sequence of closed intervals I,D/,D>--- D1I,D-+- whose end points are
rational numbers and such that
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6. Let {a,}5_, be a sequence of real numbers, and, for each n€ I, let

s,=a;+a,+--- +a,
t,=laj| +|ay|+ - +]a,|.
Prove that if {z,}_, is a Cauchy sequence, then so is {s,} 5.

7. Show by example that the conclusion of 2.10E need not hold if the intervals I, are not
assumed to be closed.

8. Use the nested interval theorem to give a new proof that [0, 1] is not countable. (Begin
this way: Let J=[0,1]. Suppose that J were countable, say J={x,,x,,- - }. At least
one of the three closed intervals [0,1], [{,2], [%,1] does not contain x,. Call one such
interval J,. Now divide J, into three closed intervals and let J, be one of the three that
does not contain x,.)

2.11 SUMMARBILITY OF SEQUENCES

In the next chapter we take up infinite series. One important branch of the field of
infinite series is the study of summability of divergent series. This study is an attempt to
attach a value to series that may not converge—that is, an attempt to generalize the
concept of the sum of a convergent series. Many (but not all) of the well-known methods
of summability deal exclusively with the sequence of partial sums of an infinite series.
These methods, then, are in reality concerned with sequences as opposed to series, and
we examine some of them now.

2.11A. We have seen that the sequences {(—1)"}>_, and {n}5_, are both divergent but
of very different character; the former is oscillating and bounded, the latter diverges to
infinity. Writing {(—1)"}7-, as — 1,1, —1,1,..., we feel intuitively that the terms of this
sequence have an “average size” of 0. The simplest kind of summability for sequences,
called (C, 1) summability (C for Cesaro), makes precise this concept of average size.

DEFINITION. Let {s,}>_, be a sequence of real numbers and let

Sp+sy+ 0 +s
0,= LA (nel).
n
We shall say that {s,};_, is (C,1) summable to L if the sequence {¢,};_; converges to
L. In this case we write
lim s,= L (G, 1.

n—oo

Note that o, is precisely the average of the first n terms of the sequence {s,}5_ ;. Thus
6,=5,,0,=(s,+5,)/2, and so on.

For example, if s,=(—1)"(n€I), then

_ DR (1)

n n ’

and so
g,=0 (n=2,4,6,...),

o==1  (n=135..)
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0,=0, which shows that {(—1)"}%_, is (C, 1) summable to 0. That is,
nlir&(—l)"=0 (G, 1).

Obviously lim

n— o0

This shows that a divergent sequence may be (C, 1) summable.
Consider the convergent sequence 1,1,1,.... Here s,=1(n€I) so that, also, o,
=n"!(s,+ -+ +s,)=1. Hence {0,}%_, converges to 1 and so

lim1=1  (C,1).

The last example is a very special case of the important result that if a sequence {s,}5_,
is convergent to L then {s,}_, is also (C, 1) summable to L.

2.11B. THEOREM. If
A s, = L,

then
lim s, =L (C,1).

n—oo

PROOF: Case I, L=0. In this case lim,_, s,=0. We wish to prove that lim,__a,=0.

Given €>0 there exists N,€I such that |s,|<e/2(n> N,). If we let M

=max(|s,|s,l,-..,|sy, 1), then we have, for n> N,,
. (Isal+ - Flswoal) +(lsw [+ -+ +1s,])
nl ™ n
(Ni=D)M+(n—N,+1)e/2
<
n >
and hence
(NI_I)M €
o S ————+5  (n>Ny). ()
Now choose N, €I so that eN,>2(N,—1)M. Then
N,—-1H)M
(IT) <5 (n>Ny). @)

If N=max(N,,N,), then (1) and (2) imply
lo,|<e (n>N),
and hence lim,_, |o,|=0. Thus lim;,_, ¢, =0, which is what we wished to show.

n—oo-n
This proves case 1.
Case II, L#0. We have lim,_, s,=L so that lim,  (s,— L)=0. Hence by case I,

n—oo n

{s,— L}y, is (C,1) summable to 0. That is,
’ nll,r& (s,— L)=0 (C,1),
which means
(5= L)+ (5= L)+ +(s,— L)
lim =

n—oo n

0. 3)

But

(5,—L)y+(s;— L)+ +(s,— L) s;+s5,+ - +s,
= —L=g¢,— L.

n n
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Thus from (3)
"lingo (o,—L)=0,

and so

lim ¢,= L.
n—oo

This, by definition, implies lim,,_, s, = L(C, 1), which proves case II.
We have now seen that all convergent sequences are (C,1) summable (to their
respective limits), and that the divergent sequence {(—1)"}%_, is also (C,1) summable.
Not all divergent sequences are (C, 1) summable. For example, if s,=n(n€1I), then

{s,}_ is not (C, 1) summable. For, in this case,
Si+sy+ o +Ss, 142440 nn+l) L4
0,= = = = ’
n n 2n 2

and so {g,}.; does not converge. In an exercise the reader is asked to show that no
sequence that diverges to infinity can be (C, 1) summable.

The sequence 1, — 1,2, —2, 3, —3,... is an oscillating sequence. We shall show that it
is not (C, 1) summable. [However, when we take up (C,2) summability, we shall see that
this sequence is (C,2) summable.] For this sequence,

_n+l
" 2
—n
Sn=T (n=2,4,6,...).
Obviously, if n is even, then (s, +s,)+(s3+s,)+ - +(s,_;+5,)=0. Thus
6,=0 (n=2,4,6,...).

If n is odd, however, then n—1 is even and s, +s,+ -+ +s5,_,+5,=s,. Hence

s (n=1,3,5,...),

= - =T (n=1,3,5,...).

Since (n+1)/2n—% as n—oo, the sequence {¢,}5_, has the subsequence o,, 0, 0s,...

converging to 3 and the subsequence o,, o,, o¢,... converging to 0. By 2.3D, {¢,}5_, is
not convergent, and hence {s,};-, is not (C, 1) summable.

To keep the record even we give one more example of a divergent sequence that is
(C,1) summable. In Section 2.3 we saw that if # is a rational number in (0, 1), then
{sinnfz};_, diverges. We shall show, however, that this sequence is (C,1) summable to
0. For, from the identity

_ ) . cos 3x —cos(n+1)x
sinx+sin2x+ -+ +sinnx= - (0<x<m)
2sinix

which will be proved in Section 8.4, we see that

) . . 10 1
o = sinfm +sin20mw + - - - +sinnfy _ €08 307 —cos(n + 3) 0w
g n 2nsin 107

’

and hence
1

o] < nsin(fx /2)

It follows easily that 0,—0 as n—o0, which proves that {sinnfr};>_, is (C,1) summable
to 0. Note that the argument applies equally well when 6 is irrational.
The reader should have no difficulty in proving the following result.
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2.11C. THEOREM. If {s,}5_, and {1,}°-, are (C, 1) summable to L and M, respectively,
then {s,+1,} -, and {s,—¢,} -, are (C, 1) summable to L+ M and L — M, respectively.

We now turn to (C,2) summability.

2.11D. perFINITION. Let {s,}_, be a sequence of real numbers and for each n€1 let

nsi+(n—1Ds,+(n—2)s3+ -+ +2s,_,+s, 2(ns;+---+s,)
K 142+ +n TCE))

We shall say that {s,}2_, is (C,2) summable to L if the sequence {7,}>_, converges to
L. In this case we write

lims,=L (C,2).

n—oo
We have
2s,+s, 25+, 35, +25,+ 54
e Ity v i S A S
etc.
It is clear that lim,_ 1=1(C,2).

Now consider s,=(—1)"(n€I). [We have already seen that lim
Then

—1y'=0(C, 1).]

n—ool

—n+(n=1)—(n=2)+--- +(-1)"
" 1424+ +n :
Now suppose n is even. Then the numerator for 7, is

[—n+(n=1)]+[-(n=2)+(n=3)]+ - +[-2+1]= —%,
since there are n/2 brackets and each quantity in brackets is equal to — 1. If » is odd,
then

—n+[(n—=1)—(n=2)]+ - +[2—-1]=—n+ n:“z'] =_(n42-1 )

Thus

_—n/2 ]
" A+ 1)/2 " n+l

(n=2,4,6,...),

and
_—(n+1/2

T"—W—T (n=l,3,5,...),

which shows that 7,—0 as n—o0. Hence

lim (—1)"=0  (C,2).

n—oo

- In the last example, (C,2) summability gave the same “value” for {(—1)"}5_, as did
(C,1) summability but was harder to apply. We shall now show by example that a
sequence may be (C,2) summable even if it is not (C,1) summable. Indeed, consider
1,-1,2,-2,3,-3,..., which we have already shown is not (C,1) summable. [Here
s,=(n+1)/2 if nis odd and s,= —n/2 if n is even.] Thus if » is even then n—1 is odd
and

(n—-DH+1

Sy =E———— == S, = —2
nel 2 20 T2
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and so
ns;+(n—=1)s,+--- +2s,_,+s,
= n(n+1)/2
_[n= (= D]+[(n=2) 2= (n—3) 2]+ -~ +[2-(n/2) = (n/2)]

n(n+1)/2
_14+24---+n/2
T n(n+1)/2

Since n/2 is an integer if n is even, we have
(n/2)(n/2+1) n(n+2)

n—
1424+ 3= 5 3
and hence
_ h+2 _
T"_4(n+‘l) (n=2,4,6,...).
If n is odd, we have
o on=24l_n—1 o _~(7h a4
n—2 2 2 ’ n—1 2 ’ n 2

and so
ns;+(n—=1)s,+--- +3s,_,+2s,_,+s,

T

" n(n+1)/2
—1 n—1 1

(n=nhee+[3(250) 2251 )]} + 24
- n(n+1)/2
{1424+ (n=1)/2) +(n+1)/2  (n?=1)/8+(n+1)/2
- n(n+1y/2 - n(n+1y/2
_n’+4n+3

4(n2+n) '

(Verify this for n=5. You should obtain

Lo ontAst s 5-446-443 2 )
’ 15 15 5

Thus 7,—1 as n—o00, and so 1, — 1,2, =2,3, —-3,... is (C,2) summable to }.
Thus (C,2) can do some things that (C,1) cannot. The next theorem shows that
anything (C, 1) can do (C,2) can do also.

2.11E. THEOREM. If
lim s,=L (G, 1),

n—oo
then
lim s,= L (C,2).

n—oo



2.11  SUMMABILITY OF SEQUENCES

PROOF:

case I, L=0. We have lim o, =0 where

n—oo-n

_ Si+Ss,+ 0+

n

o, p
We wish to prove that lim,_7,=0. Now
ns;+(n—1)s,+ -+ +s,
T =
" 142+ +n

(s;+ 83+ +5)+(s;+8,+-- +5,_))
+ (st s+ s, )+ (5, +5,)+ s,
- [+2+4 - +n
no,+(n—1o,_+(n—2)0,_,+ -+ +20,+0,
1424+ +n
o,+20,+  +no,
T 142+ +n

Since 0,—0 as n— o0, given € >0 there exists N, €/ such that
€
|O'"[<'2‘ (n>Nl)'
Let M=max(|oy|,|0,),...,|on,_])- Then, for n> N,

[|°1|+2|°2|+ (N — 1)l"zv,—ll]"'(N||"N,|"' T +n|°n|)

Tal = [+2+ - +n
M[1+2+~-~ +(N1—1)]+(e/2)(Nl+-~ +n)
142+ +n ’
and so
MNl(Nl_l) €
—_—t > .
ITn|< n(n+l) 2 (n Nl)

The remainder of the proof is exactly as in case I of the proof of 2.11B.

case II, L#0. We have lim,_, s,= L(C,1). Hence, by 2.11C,
nlingo (s,—L)=0 (G, 1.
But then, by case I of this proof, lim,_,_(s,— L)=0 (C,2). That is,
n(s;— LYy+(n=1)(s,— L)+ --- +(s,— L)
im =
n—co 14+2+:--+n
But, removing parentheses in the numerator of (1), we have
ns;+(n—1Ds,+ -+ +s,

0.

A, 142+ -« +n —Li=0
or
lim (7, ~ L)=0.

Thus lim 7, = L, which shows lim

n—oo'n "-—)00Sn

= L(C,2), and the proof is complete.

63
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2.11F. coroLLARY. If {s,}%_, converges to L, then {s,}>_, is (C,2) summable to L.
PROOF: The proof follows directly from 2.11B and 2.11E.

2.11G. Although we will not give details, we mention that the sequence 1, —2,3, —4,
5,—6,... is not (C,2) summable but is (C,3) summable. For the record we give the
definition of (C,k) summability for any k€ /.

'DEFINITION.  Let {s,}%_, be a sequence of real numbers, let k denote any fixed positive
integer, and for n €1 let

_[{n+k-2 n+k-3 N 1 (n+k—l)
>\"_[( )sl+( n—2 )s2+ +(1)S"_1+s”]/ n—1J

n—1

where

(6)= T

[In summation notation,

n
1 n+k—l—-j)
A =—— "
" (n+k—l)21( n—j )9
n—1

Then {s,}>_, is said to be (C,k) summable to L if {A,}_, converges to L.

The reader should verify that the special cases k=1 and k=2 in this definition
actually coincide with (C, 1) and (C,2) summability as previously defined.

It may be shown that if £>1 and {s,}_, is (C,k — 1) summable to L, then {s,}_, is
(C, k) summable to L. Moreover, there w111 be a sequence which is (C,k) summable but
not (C,k —1) summable.

2.11H. In general, the term “summability method” can be defined as a real-valued
function T whose domain is a set of sequences. A point (sequence) is in the domain of T
if T “sums” the sequence—that is, if the sequence is assigned a real number by 7.

Thus the domain of (C, 1) is a proper subset of the domain of (C,2). Since (C, 1) and
(C,2) agree at a sequence where they are both defined, we may say that, from a function
point of view, (C,2) is an extension of (C, ).

The (C,k) summability methods are an important but very minute part of the class of
summation methods. The various methods differ greatly in their ability to sum divergent
sequences and in the ease with which they can be applied. However, we almost always
insist on one minimum requirement for a summability method 7, namely, that any
convergent sequence be 7 summable to its limit.

DEFINITION. Let T denote a summability method for sequences [for example,
(C,1),(C,2),...]. Then T is said to be regular if, whenever {s,}x_, converges to L, then
{s,}_, is also T summable to L.

2.111. THEOREM. (C,1) summability and (C,2) summability are regular.

PROOF: The proof follows directly from 2.11B and 2.11F.
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It is interesting to note that if a method of summability sums too many sequences, it
cannot be regular. Indeed, it may be shown that if every bounded sequence is T
summable, then T is not regular.

A famous, _very general summability theorem will be presented in Section 3.12, Notes
and Additional Exercises for Chapters 1-3.

Exercises 2.11

1. Prove that the following sequences are (C, 1) summable.

(a) 1,0,1,0,1,0,...
(b) 1,0,0,1,0,0,1,0,0,...
(© —1,2,2,—-1,2,2,—-1,2,2,...

2. If s,,85,85,... is (C,1) summable to s, and if tE R, prove that t,s,,5,,5;,... is (C,1)
summable to s.

3. Prove that a sequence that diverges to infinity cannot be (C, 1) summable.

4. Let {s,}®_, be a sequence of real numbers, o,=n"'(s;+s,+ - -+ +s5,). Prove that if
{s,}>_, is (C, 1) summable, then lim,_, (s,/n)=0. [Hint: Compute no, —(n—1)a,_,.]
Deduce that 1, —1,2, —2,3, —3,... is not (C, 1) summable.

5. Let {s,}, be a sequence of positive numbers with lim

. n,
lim Vs;s,+ -5, =s.

n—oo

s =g, where s >0. Prove

n—oo n

(Hint: Take logarithms.)
6. If {s,};—, is a sequence of positive numbers and if lim,_ (s,/s,_,)=L, prove

lim, " Vs, =L. (Hint: Let t,=s,,t,=5,/8,5...,4,=5,/5,_,. Apply the preceding
exercise to {#,}7_1.)
7. Without using (C, 1) summability, prove that 1,0,1,0,1,0,... is (C,2) summable to 1.
8. If {s,}_, is monotone, prove that {¢,}5_, is monotone where
s;+ e+,
0,=—.

" n

9. Prove theorem 2.11B by using the result of exercise 7 of Section 2.9.

2.12 LIMIT SUPERIOR AND LIMIT INFERIOR FOR SEQUENCES OF SETS

2.12A Suppose E|,E,,... are subsets of a set S. For each n€/ let x, denote the
characteristic function of E,. Then, if x € S, the terms of the sequence {x,(x)}:_, consist
of 0’s and I’s. It is then clear that either limsup,,_, x,(x)=0 or limsup,_, x,(x)=1, and
similarly for liminf,  _x,(x). We have the following theorem.

THEOREM. Let {E,}_, be a sequence of subsets of a set S, and let x, be the
characteristic function of E, (n€I). Let x be any point in S. Then .

(a) limsup,_,  x,(x)=1 if x€E, for infinitely many values of n, while lim
SUp,_, X, (x)=0if x € E, for only a finite number of n.
Also

(b) liminf, _ _x,(x)=1if x € E, for all but a finite number of values of n, while lim
inf,_, x,(x)=0 if there are infinitely many values of n such that x E,.
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PROOF: We shall prove (b). If x is in E, for all but a finite number of values of n,
then there exists N €/ such that x€E, (n> N). Hence x,(x)=1 (n>N) and so
liminf,_ x,(x)=lim,_  x,(x)=1.

However, if there are infinitely many » such that E, does not contain x, then x,(x)=0
for infinitely many values of n. Hence

gLb.{x, (%), Xy 1(x)s-.. } =0

for all n, and so liminf,_ _x,(x)=0. This proves (b). The proof of (a) is left to the
reader.

It is then natural to make the following definition.

2.12B. DEFINITION. Let {E,}_, be a sequence of subsets of a set S. Then we define
limsup,_, . E, to be the set of all x €S such that x is in E, for infinitely many values of
n. We also define liminf, _ E, to be the set of all x €S such that x is in E, for all but a

finite number of values of n.

From part (a) of the theorem it then follows that if x*(x)=Ilimsup,_,  x,(x) (xE€S),
and E*=limsup,_, E,, then x* is the characteristic function of E*. Similarly, part (b) of
the theorem shows that if x.(x)=liminf,_ _x,(x) (xE€S), and E,=liminf,_ E,, then
X is the characteristic function of E,.

Briefly, then, the characteristic function of limsup,_ E, is limsup,_  x,, and simi-
larly for liminf.

Exercises 2.12
1. Prove that, if { E,}-, is a sequence of subsets of S, then

l‘,,“_},g,‘f E,C ]l’I;ILS::p E,.

2.fE=E,=E;=---=Sand E,=E,= Eg=--- =, compute

limsupE, and liminfE,.
n—oo n—oo
3. Let {E,}-, be a sequence of subsets of S.
(a) If x Elimsup,_,  E,, prove that x€ U, E, for every n€ 1.
(b) Prove that

(o]

[ee]
limsup E,= ) ( U Ek).
n—oo p=1 \k=n
4. (a) If x €liminf,_,  E,, prove there exists n € I such that x€ Ny, E,.
(b) Prove that

0

0
linn_l)glen= U ( Al Ek).
n=1 \k=n
5. (a) If E,CE,C E;C- -, prove that
o]
limsup E, = liminf £, = U E,.

n—oo n=1
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(by If E,DE,DE;D---, prove that
0

limsup E, = liminf E, = M E,

n—oo n=1

6. Give a definition of lim,_ E,.
7. If E, denotes the closed interval [n,2n], find lim,_  E,. What can you say about the
length of E, as n—c0? Do the answers to the first two parts of this question agree with

your intuition?
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3.1 CONVERGENCE AND DIVERGENCE

We recall that the sum of the infinite series a;+a,+ -+ +a,+ -+ is defined as
lim,_ (a,+ - +a,), provided that the limit exists. This, however, is the definition of
the sum of an infinite series and is not the definition of “infinite series” itself.

Like the term ‘“ordered pair,” the term “infinite series” is a highly intuitive one whose

proper definition is not very illuminating.

3.1A. pErINITION. The infinite series Z5_,a, is an ordered pair {{a,}y_, {S,} =)
where {a,}_, is a sequence of real numbers and .

s,=a,ta,+--- +a, (nel).
The number g, is called the nth term of the series. The number s, is called the nth partial
sum of the series.

In addition to X37_,a,, we sometimes denote a series by a,+a,+ -+ +a,+ -+ or
simply by a,+a,+ ---. Thus the nth-partial sum of the series 1—1+--- +(—1)"*!
+--- is 1 if n is odd and 0 if » is even.

It is often convenient to index the terms of a series beginning with n=0. That is, we
write some series as 25_,a,. (In this case we let s,=a,+a,+ - -+ +a,.) Thus the series
1+ x+x%+--- can be written 3%_,x". It is always trivial to verify that any definition
or theorem about series written Z_,a, has an exact analog for series written 2%_a, or
27 ,a, for any integer p > 0. We shall not further belabor this point.

The definition of convergence or divergence of the series 3%_,a, depends on the

convergence or divergence of the sequence {s,}%_, of partial sums.

3.1B. DEFINITION. Let X°_,a, be a series of real numbers with partial sums s,
=a,+--- +a, (n&). If the sequence {s,}_, converges to A € R, we say_that the series
2 ,a, converges to A. If {s,}5_, diverges, we say that 3%_,a, diverges.

68
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If 25_,a, converges to A, we often write X7°_,a,= A. Thus we use 2{_,a, not only to
denote a series, but also (in case the series converges) its sum. With this warning we leave
it to the reader to convince himself that no ambiguities arise.

From theorems on convergent sequences follows the next result.

3.1C. THEOREM. If Z°_,a, converges to 4 and Z_ b, converges to B, then the series
27 (a,+b,) converges to 4+ B. Also, if ¢ €R, then Z%_,ca, converges to cA.

PrROOF: If s,=a,+:-++a,and t,=b,+- , then, by hypothesis, lim,__s,=A4
and lim,_, .¢,= B. But the nth partlal sum of Zn_,(a +b,) is (a;+b)+ -+ +(a,+b,)
=s,+ t, which, by 2.7A, approaches 4 + B as n—oo. This proves Z5_,(a,+b,)=A + B.
The second part of the theorem follows from 2.7B.

An obvious consequence of 3.1C is that 2. (a,— b,)=A4 — B.
The following theorem gives a necessary (but not sufficient!) condition that a series be
convergent.

3.1D. THEOREM. If ¥%_,a, is a convergent series, then lim a =0.

n—oon

PROOF: Suppose .2%_,a,=A. Then lim, =A where s,=a,+ """ . But then
lim,_ s,_;=4A. Since a,=s,—s,_; we have, by 2.7D, lim,_, ,a, llmn__wsn—
lim, ,s,_,=A—A=0, which is what we wished to show.

Thus we see immediately that the series 2%_,(1—n)/(1+2n) must diverge. Here,
a,=(1—n)/(14+2n), and so lim,_, a,= —1+#0. Thus by 3.1D, £5_,a, cannot be con-
vergent. Similarly, the series £¢°_,(— 1)" must diverge since lim —1)" does not even
exist.

We emphasize that the condition lim,_ _a,
be convergent. In the next section we will see that =%
though lim,_, a,=lim,_ (1/n)=0.

n—oo'n

n—»oo(

=0 is not sufficient to ensure that 3°_,a,
(1/n) is not convergent even

n=1

Exercises 3.1

1. Prove that if a, +ay+ -+ converges to s, then a,+ a;+ - - - converges to s—a,.
2. Prove that the series £°_,[1/n(n+1)] converges. [ Hint: Write

1 _1 1

n(n+1) n n+l

and compute the partial sums of the series.]

3. For what values of x does the series (1—x)+ (x — x2)+ (x2— x?)+ - - - converge?

4. Prove that the series (a, — a,)+(a, — a3)+(a;—a,)+ - - - converges if and only if the
sequence {a,};—, converges.

‘5. Does the series 2%_,log(1 +1/n) converge or diverge?

6. Prove that for any a,b € R the series a+(a+b)+(a+2b)+(a+3b)+ --- diverges
unless a = b=0.

7.. Show that 3¢_,a, converges if and only if given ¢>0 there exists N €/ such that

n

IR

k=m+1

<e (n>m>N).
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8. Prove that if a;+a,+a;+ --- converges to 4, then i(a,+ay)+ j(a,+a;)+3(ay+
a,)+ -+ converges. What is the sum of the second series?
9. Does Z%_,[(n+1)/(n+2)] converge or diverge? Does

i n+1
i 10°%(n+2)

converge or diverge?
10. Show that if a;+a,+a;+--- converges to L, then so does a;+0+a,+0+a;+

0+ - --. More generally, show that any number of 0 terms may be inserted anywhere
(or removed anywhere) in a convergent series without affecting its convergence or its
sum.

11. Prove that if £;°_,a, converges and 2;°_ b, diverges, then X7°_,(a, + b,) diverges.
12. Let ¥¥_,a, be a convergent series. Let {n;}2, be any subsequence of the sequence
of positive integers. Finally, let

by=a,+ay+:-: +a,
by=a, \*+- - +a,

by=a, 1t +a, (kel).

L.

Prove that _,b, converges and has the same sum as Z5_,q,.

13. Verify that the preceding exercise yields the following important result. If 2%_,a,
converges, then any series formed from Z%_,a, by inserting parentheses [for ex-
ample, (a;+a,)+(a;+ -+ +a;)+(--+) -] converges to the same sum.

14. Give an example of a series Z5_,a, such that (a, + a,)+ (a;+a,)+ - - - converges but
a,ta,taztas+--- diverges (This shows that removing parentheses may cause
difficulties.)

3.2 SERIES WITH NONNEGATIVE TERMS

The easiest series to deal with are those with nonnegative terms. For these series, all
theory on convergence and divergence is embodied in the following theorem.

3.2A. THEOREM. If 2,4, is a series of nonnegative numbers with s,=a,+ - +a,
(n€l), then (a) En_la converges if the sequence {s,}%_, is bounded; (b) =_,aq,
diverges if {s,}%_, is not bounded.

PROOF: (a) Since a,,,>0 we have s, ,=a,+ - +a,+a,,,=5, +a,.2 . .Thus
{s,}%_, is nondecreasing and (by hypothesis) bounded. By 2.6B, {s,,},l==l is convergent
and thus 2,,_,a converges.

(b) If {s,}_, is not bounded then, by 2.5B, {s,}>_, diverges. Hence so does =%_,a,.

We now give two important examples of series with nonnegative terms. The first is the
geometric series 1 +x+x2+--- .

3.2B. THEOREM. (a) If 0<x <1, then IF_,x" converges to 1/(1— x).
(b) If x> 1, then ¢_,x" diverges.
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PROOF: Conclusion (b) is an immediate consequence of theorem 3.1D since, if x > 1,
)
then {x"}_, does not converge to 0. To prove (a) we have s,=14+x+--+ +x" and so
1—x" +1 1 x n+1

I—x  1-x 1-x (nEl).

Sn

But if 0< x <1, then lim,_ x"*'=0 by 2.7C. Hence lim
(a).

The second example is the series 1+1+:--+1/n+---, known as the harmonic
series.

=1/(1-x). This proves

n—>oosn

3.2C. THEOREM. The series =%°_,(1/n) is divergent.

n=1

PROOF: We examine the subsequence s,,5,,54,5g,...,5-1,- -+ of {s,}5-, where, in this
case, s,=1+4+1+--- +1/n. We have :
s =1,
s=1+1=3
=85+ +1>3+141=2
= lylgl 1 Lyl 1,15,
Sg=S;+3+s+3+§>2+gt+gtgt+tg=3;

in general, it may be shown by induction that s,, > (n+2)/2. Thus {s,}5_, contains a
divergent subsequence and hence, by 2.3D, diverges. This proves the theorem.

We repeat that the divergence of the harmonic series shows that Z¢_,a, may diverge
even if lim,_ a,=0.
3.2D. For series with nonnegative terms only we introduce the following notation.

If 27,4, is a convergent series of nonnegative numbers, we sometimes write 27°_,a,
<co. If Z37_,a, is a divergent series of nonnegative numbers, we sometimes write
2% ,a,=0o0. Thus

had n
2 (3) <oo,
n=0

0
Sl

n=1

3.2E. It is very interesting to note that there is no series that diverges “as slowly as
possible.” More precisely,

THEOREM. If -¥%°_,a, is a divergent series of positive numbers, then there is a
sequence {¢,}>_, of positive numbers which converges to zero but for which Z7_,¢,a,
still diverges.

PROOF: Lets,=a,+a,+ -+ +a, We first show that the series Z¢_ (sS4 1= S¢)/ k41
diverges. For any me& I choose n€1I such that s,,,>2s,. (This is possible since by
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hypothesis {s,}7_, diverges to infinity.) Now {s,}7_, is nondecreasing. Hence

n

n
Sk+1" Sk Sk+17 Sk
____.__} —_—
s

S,
k=m k+1 k=m n+1

1
s [(sm+l—sm)+(sm+2_sm+l)+”' +(sn+l_sn)]

n+1
— —1
Sn+1 " Sm Sn+1 25n+1 1
= > = 5 .
Sn+1 Sn+1

Thus for any m &I there exists n € I such that

n

Sk+17 Sk _ 1
SR

S
kem k+l

The partial sums of the series Z¢_ (S, 4, = S¢)/ Sk 4+ thus do not form a Cauchy sequence
and hence

(See Exercise 7 of Section 3.1.)
But s, ., — s, =a, .. Thus

Let ¢ =1/s,. Then ¢,—0 as k—o0 and I¢_,€.a, = 0. This completes the proof.

Exercises 3.2

1. If Z7_,a, is a convergent series of positive numbers, and if {a,}72, is a subsequence
of {a,}_,, prove that 2% ,a, converges.
2. Prove that

converges.

3. If 0<a,<1(n>0)and if 0< x <1, then prove that £°_,a,x" converges, and that its
sum is not greater than 1/(1— x).

4. If {s,}7-, is nondecreasing, and s, > 0 (n €I), prove that there exists a series S%_,a,
with g, >0 (k€T) and

s,=a;t+a,+-- +a, (nel).

5. Prove that 1+ 3+ 1+ 1+ -.-is divergent.
6. For what values of x € R does the series

— — 2 _ 3
l+l x+(l x)+(1 x)+“_

1+ x
converge, and what is its sum?
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3.3 ALTERNATING SERIES

An alternating series is an infinite series whose terms alternate in sign. For example,
the series 1-14+4—-31+4... 1-243-4+- 1+1—4+--. are all alternating
series. An alternating series may thus be wrltten as 2,,_1 )"”a,, where each aq, is
positive [or as 25_,(— 1)"a, if the first term in the series is negative]. We now dem-
onstrate the fundamental result on alternating series.

3.3A. THEOREM. If {a,}*_, is a sequence of positive numbers such that
@ a>a>--- > a,>.a,,.,> - (thatis, {a,}5_, is nonincreasing), and
(b) lim,_, a,=0,

then the alternating series %_, (—1)"*a, is convergent.

n=1

PROOF: Consider first the partial sums with odd index s,,53,5s,.... We have s;=s5,—
a,+a;. Since, by, (a), a;<a, this implies s;<s,. Indeed, for any n€Il we have
s 1 =821~ Ay, t Ay | < Syy_y. Thus §;283> - 28, 2585,,,,> "+s0 that
{$2s_1}=1 1s nonincreasing. But s,,_;=(a,—ay)+(az—ay)+ - +(a,_3—a5,_)+
a,,_,. Since each quantity in parentheses is nonnegative and a,,_,>0, we have s,,_,
>0. Hence by 2.6E, {s,,_,}~; is convergent. Similarly, the sequence s,,5,...,5,,,... is
convergent. For s,,,,=5,,+ a5, 1= 3,42 > 55,, and so {s,,}%_, is nondecreasing. But
also s,,=a;—(ay—az)— -+ —(ay,_,— a3,_,)— ay,- Thus s,,<a, so that {s,,}7_, is
bounded above. Now, let M =lim,_, s,,_, and let L=lim,_, s,,. Then since a,,=s,,—
55,1 we have, by hypothesis (b),

0= ”ango ay,= "ango Sy~ nli_)ngo Sgp1=L—M.

Thus L =M, and so both {s,,}>_, and {s,,_,}>, converge to L. Frf)m this it is easy to
show that {s,}%_, converges to L, and hence that %_,(—1)"*a, is convergent to L,
which completes the proof.

n=1 n

Note that the proof shows that s,, ;> L and s,,< L. Thus 0<s,,_,— L<s,,_,—5,,
=a,,, and so |s,,_;— L|<a,, Similarly, 0< L—s,,<s,,,1— $3,=0a3,+1> SO that
|$3,— L| < a,, ;. That is, whether k is odd or even we have shown that |s, — L|<a, .
We thus have the following corollary, which enables us to estimate the sum of this kind
of convergent alternating series.

3.3B. COROLLARY. If the alternating series 2%_,(— 1)"*'a, satisfies the hypotheses of
theorem 3.3A, and hence converges to some L € R, then

s — LI < a4y (kET).
Thus the difference between the sum of %_,(—1)"*'a, and any partial sum will be no
greater than the magnitude of the first term not included in the partial sum.

. Let us now illustrate 3.3A and 3.3B. We saw in 3.2C that £%°_,1/n diverges. However,
since {1/n}%_, is a nonincreasing sequence and lim,_, 1/n=0, it follows from 3.3A

that %_,(— 1)"*'/n converges. That is, for some L € R,
1
1.1 1 (=" B
l—g4+g—g++——+ =L

Of course, we do not know what L is, but we can estimate it using 3.3B. For, by 3.3B, for
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any n €I we have

1
n+1°

n

H:I_.é_+...+_(;l_):+_l]_L <

If we take n=09, this yields

|0.7456 — L| <5,
so that 0.6456 < L <0.8456. (In fact we know sy > L, and so we can conclude 0.6456< L
<0.7456.) Actually, it may be shown that L—log2 0.6932- -

If 0<x<1, then 3.3A implies 1— x+ x?—--- converges. The method of 3.2B may
also be used to show that

l—x+x?—--. = O<x<1).

As a final example consider the series

SEV
n! o2t 3
n=0
This series converges by 3.3A. If L=3%_(—1)"/n!, then

1 1 1 1 1 1
@“F*E‘?*ﬁ‘ﬁ)LFa

From this we conclude |L—0.3666|<0.0014. (From elementary calculus you should
recall that L=e¢"'=0.3679---.)

Exercises 3.3

1. For what values of p does the series 1/17—1/27+1/3?—1/4? + - - - converge?
2. If x is not an integer, prove that 1 /(x+1)—1/(x+2)+1/(x+3)— -+ converges.
3. Prove that
(a) 2—2'/2421/3-21/44 ... diverges,
(b) (1-2)—(1=2"%)+(1-2"3—(1-2"%+ .- converges.
4. Show that if
(=

a,= —
Vn n
then 3=_,(—1)"*'a, diverges. (Here a,>0 and lim
3.3A apply?)
5. Show that =2_,(—1)"*'n/(2n—1) diverges.

=0. Why doesn’t theorem’

n—oo n

3.4 CONDITIONAL CONVERGENCE AND ABSOLUTE CONVERGENCE

We saw in the preceding section that the series
1-1+31-1+- €))
and the series
= +i-g+o - @
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both converge. However, these two series differ in the following respect. If we take the
absolute value of each term in (1), we obtain

I+3+3+4+--- 3)
which converges, whereas if we take the absolute value of each term in (2) we obtain
1+4+1+5+-- 4)

which diverges. This leads us to the following definition, which divides convergent series
into two classes.

3.4A. DEFINITION. Let 2%°_,a, be a series of real numbers.

(a) If 27 ,|a,] converges, we say that 3°_,a, converges absolutely.
(b) If %_,a, converges but =%_,|a,| diverges, we say that %_,a, converges condi-
tionally.

n=

Thus the series (1) converges absolutely while the series (2) converges conditionally.
We must justify the use of the word “converges” in the phrase “converges absolutely.”
This is done in the following theorem.

3.4B. THEOREM. If %°_,a, converges absolutely, then X5°_,a, converges.

PROOF: Lets,=a;+ - +a, We wish to prove that {s,}5_, converges. By 2.10D, it
is enough to show that {s },,_l is Cauchy. By hypothesis %_,|a,| < (see 3.2D) and
thus {7,}%., converges where t,=|a,|+--- +|a,|. By 2.10B, {#,}_, is Cauchy. Thus
given € >0 there exists N € I such that

|, — 1, <€ (m,n>N).
But (if m> n, say), |s,, = s,/ =[a,41+ - +a,|<|a, 1|+ +]a,|=|t,,— 1,|. Thus
|8, — 8, <€ (m,n>N).

This proves that {s,}:>, is Cauchy, which is what we wished to show.

34C. If we separate a series 27°_,a, into the series of positive a, and the series of
negative a,, we can show up an important distinction between absolutely convergent and
conditionally convergent series.

More precisely, if Z%_,a, is a series of real numbers, let

p,=a, if a,>0,
p,=0 if a,<0.

[Thus for the series 1 =3 +31—---, p;=1, py=1, p,,_,=1/2n—1), while p,=p,=
=0.] Similarly, let
g,=a, if a,<0,

g,=0 if a,>0.

The p, are thus the positive terms of Z°_,a, (along with some 0’s) while the g, are the
negative terms. It is easy to see that

p,=max(a,,0), g,=min(a,,0)
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and hence by 1.4D,
2p’l=a’l+|a’l| and 2qn=a’l_|an|' (*)

Also,
=pn + qn'
It is now not difficult to prove the following interesting result.

THEOREM. (a) If ¢_,a, converges absolutely, then both £%_,p, and Z%_,g, con-
verge. However,

(b) If Z3°_,a, converges conditionally, then both Z5_,p, and Z5_,g, diverge.
Finally, '

(c) If Z5°_,p, and 2,,_,q,, both converge, then ¥%°_,a, converges absolutely

PROOF: (a) If 27,4, and X7_,|a,| both converge, then, by 3.1C, so does £_,(a, +
|a,]). Thus from (x), £¥_,2p, converges. By 3.1C again, this implies the convergence of
2. 1P, The series £°_,¢g, may be proved convergent by similar reasoning.

(b) We now assume that 2;°_,a, converges but that 3°_,|a,| diverges. From (x) we
have |a,|=2p,—a,. If ZF_,p, converged, then, by 3.1C, so would

o0

0
2 (zpn_— an)= 2 |an|’
n=1 n=1
contradicting our assumption. Hence 25_, p, diverges. Again, 2%°_,g, may be handled in
the same way.

(c) Since p,=(a,+]a,|)/2 and g,=(a,—|a,])/2, we have |a,|=p,— q, Hence if
20 p, and 27_,q, both converge, then so does Z%_,|a,|, which shows that Z%_,a,
converges absolutely.

Thus since 1—4+§—%+--- is a conditionally convergent series, it follows that
1+0+3+0+4+0+--- diverges, and hence that 1+ +1+ .- diverges.

The last theorem tells us, roughly, that an absolutely convergent series converges
because its terms are “small” while a conditionally convergent series converges because
of “cancellation” between its positive and negative terms.

Exercises 3.4

1. Classify as to divergent, conditionally convergent, or absolutely convergent:

1 1 1
e TR TR TR
by 1-3+1-1+4...,
(© §=3+i=g+-,
d 1=-1+3-1+4-14...
(e) ]__l_+l_l+_l__i+__._l_+

2 2 922 3 923 4 94
2. Can a series of nonnegative numbers converge conditionally?
Prove that if £%_,|a,| < oo, then |ZF_,a,| <Z7_,|a,l|.
4. If £°_,a, converges absolutely, and if ¢,= +1 for every n€ I, prove that Z%_ ¢,qa,
converges.
5. If 257_ €,a, converges for every sequence {¢,} 5, such that ¢,= * 1 (n € I), prove that
2%_,a, converges absolutely.

w
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3.5 REARRANGEMENTS OF SERIES

3.5A. Roughly speaking, a rearrangement of a series 33°_,qa, is a series Z5_,b, whose
terms are the same as those of £°_,a, but occur in dlfferent order. (A precise defmltlon
of rearrangement is given later in this section.) We shall see that rearranging an
absolutely convergent series has no effect on its sum but that rearranging a conditionally
convergent series can have drastic effect.

We have seen that the series £%_,(—1)"*'/n converges conditionally to some LER

(where we have stated but not proved that L =1log2). In addition, we know 0.6 < L <0.8
so that L#0. We have

Lel=d+i—dti—dri—f+oo-. (1)
By 3.1C,

and so, certainly,
tL=04+3-0—5+0+¢—-0—3+---. (2)
If we then add (2) to (1) we obtain, again by 3.1C,

(5 He (010 3E)
(e (el o(5te 3o

sL=1+4i-1+1+1-t+i+4 -1+ 3)

or

The series on the right of (3) is a rearrangement of the series on the right of (1), but they
converge to different sums! -

3.5B. Indeed, we can find a rearrangement of S%_,(—1)"*!/n that will converge to
any preassigned real number—say, for example, 512. From 3.4C we know that
1+4+1+--. diverges. By 3.2A the partial sums of this series must be unbounded.
Thus 1+41+1+.-- +1/N will be greater than 512 for all sufficiently large odd integers
N. Let N, be the smallest odd integer such that

1 1 1
1+'3—+§+ +Nl>512.

Then
1 1 1 1

1+§+'5—+ +Fl—5 <512

(why?). Now let N; be the smallest odd integer greater than N, such that

1,1 1 1 1
I+3+5+ +Nl 2+N1+2+ +N2>5]2

Then
1,1 1 1 1 1

I+3+s+ +V,_5+N,+2+ +VZ_Z\512

Continuing in this fashion we may construct a rearrangement of 3_ (—1)"*'/n that
converges to 512. You supply the details.
Now let us define “rearrangement” precisely.
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3.5C. DEFINITION. Let N={n,}%2, be a sequence of positive integers where each posi-
tive integer occurs exactly once among the n,. (That is, N is a 1-1 function from I onto 1.)

If £5_,a, is a series of real numbers and if
b= a,

then X325, is called a rearrangement of £_,a,.

(i€1),

If A={a}2, and B={b;}2,, then, in the definition 3.5C, we have A°N=B. If
N ~'={m)%, is the inverse function for N, then (by Exercise 12 of Section 1.5)
A=B°N ~!'so that q,= b,,- This shows that 272 ,q; is also a rearrangement of 37°_,b, if
25.1b, is a rearrangement of %_,a,.

In the exercises the reader is asked to supply the proof of the following theorem, which
consists of an imitation of the method in 3.5B.

3.5D THEOREM. Let 2_,qa, be a conditionally convergent series of real numbers. Then
for any x € R there is a rearrangement of ¥7°_,a, which converges to x.

For absolutely convergent series the story is entirely different. We first treat the case
of a series of nonnegative terms.

3.5E LEMMA. If Z%_,a, is a series of nonnegative numbers which converges to 4 R,
and ¥%_,b, is a rearrangement of X°_,q,, then %_,b, converges and X5_,b,=A4.

PROOF: For each N€&€J, let sy=b,+-- +by. Since b;=a, for some sequence
{n;}72,, we have

by=a,,....by=a,.

Let M =max(ny,...,ny). Then, certainly, sy <a,+--- +a, <A. Thus by 3.2A, Z_,b,
converges to some B € R. But B=lim,_, sy and so by 2.7E, B< 4. (That is, Z3°_,b,
<3X¥_,a,) But, since Z_,a, is also a rearrangement of _,b,, the same reasoning with
the roles of Z57_,a, and Z37_ b, reversed would show 4 < B. Hence B= A and the proof
is complete.

The result in 3.5E clearly holds also for a series of nonpositive numbers. The lemma is
a special case of the following theorem.

3.5F THEOREM. If ¥%_,a, converges absolutely to 4, then any rearrangement Z5_,b,
of T%_,a, also converges absolutely to 4.

PROOF: Define p, and g, as in 3.4C, so that a,=p,+ g,. Then, by the theorem in
34C, both ¥%_,p, and Z7_,q, converge. Say 3%_,p,=P and Z%_,q9,=Q (so that

n=1

0<0). Then 4A=P+ Q by 3.1C. For some {n;};2,, we have
b=a,=p,+4,:

Moreover, 32

i=

1P, 1s @ rearrangement of the series 237_, p, of nonnegative terms. Hence

n=1
by the lemma 3.5E, 2?2, p, converges and 22, p, = P. Similarly, 32 g, = Q. Since

bi =pn,- + qn,’

theorem 3.1C implies that 2?2 b, converges and

i=1

0 o0 00
E bi= 2 Pn,+ 2 qn,=P+Q=A'

i=1 i=1 i=1
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All that remains to be demonstrated is the absolute convergence of X2 b,. But since
b;=p,,+ 4, we have

|61 <o) + 145 = Pr,— G,
Thus for any N €1,

N N o0 .
byl + -+ +lby| < 2 Py > gy, < > Pn— > 4,=P—-Q.

i=1 i=1 i=1 i=1
The partial sums of 2 ,|b,| are thus all bounded above by P— Q and hence 222 ,|5,|

< 00.* This completes the proof.

3.5G. Our theorem on rearrangements gives us a theorem on the multiplication of
series.

If we formallyt take the product of two power series 2%_qa,x" and 27_b,x" and
collect terms with the same power of x, we have

(ap+a;+ayx?+ - )(bg+ byx+ byx*+ - - )=ao{0+(a0bl + a,by)x
+ (aghy + a\by + azbo)x*+ - - .
That is,

(S S0 S .
n=0 n=0 n=0

where ¢,=3% _oa,b,_,(n=0,1,2,...). For purposes of application, it is enough to
examine (*) in the case x =1. We shall prove that

o0 o0 0
($a) $0)-5
n=0 n=0 n=0
under the hypothesis that the two series on the left converge absolutely.

THEOREM. If the series £3°_a, and ¥°_.b, converge absolutely to 4 and B, respec-

tively, then AB= C where C=3%_,c, (the series converging absolutely) and
y n=0%n

n

= 2 apb,_,  (n=0,1,2,...).
k=0

PROOF: For k=0,1,2,... we have |c,| <|agh,|+|abe_,|+ -+ +|a,by|. Thus for any
n,
|col +er + -+ +]e,|
<lagbo| + (laghi| + [abol) + - - = + (|aohy| +|a;b, 1|+ - - - +agb,|)

<(lagl+ - -+ +|a,)(|bol + - - - +|bn|)<( § 'akl)( § Ibkl)'
k=0 k=0

The sequence of partial sums of Z_g|c,| is thus bounded above, and hence
0
lee| < 00.
k=0

* See 3.2D.
F That is, without regard to rigor.
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The foregoing inequalities also show the absolute convergence of the series
agby+ agb, + a\by+ agh, + a b, + ayby+ agby+ - - - (1

(whose sum is 2¢_,c,)-
By 3.5F we may rearrange the terms in (1) to obtain*

0
2 a=[agbo] +[agh, +a,by+a,by]
k=0
+[agh, + ayby+ a\b,+ ab, + ayby ]+ -+ - . (2)
Inside the nth bracket (n=0,1,2,...) on the right of (2) are all products a;b, where either

Jj or k is equal to n and neither j nor k is greater than n. Let us examine the sum of the
terms in each bracket. If

A,=ayt+a+---+a

n»

and B,=by+b,+ - +b,
we have
agby= Ay By,
agh,+ a,by+a,b,=(ayg+a,)(by+ b)) —ayby=A,B,— AyB,,
agby+ aby+ a,by+ ayby + ayby,=(ag+ a; + a,)(by+ by + by)
—(ap+a,)(by+b)=A4,B,—A,B,,
and in general, for n > 1 the quantity in the nth bracket on the right of (2) is equal to

A,B,—A,_B,_,. The sum of the first n brackets on the right of (2) is therefore
[A¢gByl+[A4,B,—AyByl+ -+ +[A4,B,— A,_B,_,]1=A4,B,, which approaches AB as

n=—n>

n—oo. The right side of (2) is thus equal to 4B and the proof is complete.

3.5H coroLLARY. If for some x & R the power series 2%_,a,x" and Z_,b,x" are
absolutely convergent, then

(5 ) S ) S o "
n=0 n=0 n

=0

where ¢,=3% _oa,b, -
PROOF: Let 4,=a,x", B,=b,x". Then, by 3.5G

(Ze)En)- e @

where
n n n
— — k n—k_ .n —_ n
Cn_ 2 Aan—k_ 2 QX bn—kx =X 2 akbn—k_cn‘x .
k=0 k=0 k=0

Equation (1) thus follows from (2).

FExercises 3.5

1. Prove that if |x| <1, then

1
1—x "

T+ x2+x+ x4+ x84+ 3+ x¥3+ x4+ X%+ ... =

* See Exercise 13 of Section 3.1.
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2. Prove that if a, +a,+a;+ - - - is absolutely convergent, then a;+a,+a;+--- =(a;+
as+as+ -+ )+(ay+a,+ag+ - --). Is this true for all conditionally convergent series?
3. What, if anything, is wrong with the following?

_+___ %_%+“..
=1+ =D+ G- D) +HE+G D)+
=(1+%+§+;‘,—+l+—+--~)—1

2 3
=(1+3+4+--)—-(1+3+5+---)=0.
4. Show that there exists a rearrangement 2%_,b, of 1—3+ 43—} +1—---such that, if
t,=b,+---+b, then
h'rlris(gp t,= 100, hnrgg}ftn= —100.

5. Show that any conditionally convergent series has a rearrangement that diverges.
. Prove theorem 3.5D.
7. Write the following products in the form Z%_qc,x"
(@) (Er-onx" WS y-ox ™)
(0) Er=ox" N 7=o(—1)x").
8. If 0< x <1, prove that

[2))

(li )2= S (n+1)x

x n=0

9. Let L=3%_,[(—1)"*']/n. Show that each of the following series converges to the
indicated sum:

(b) 1+3+4—-3—4—¢t+i+5+4—...=L.

3.6 TESTS FOR ABSOLUTE CONVERGENCE

In the last section we discussed the behavior of absolutely convergent and condition-
ally convergent series in general. In this section we take up methods (tests) used to
decide whether or not a specific series converges absolutely.

3.6A. DEFINITION. Let 2%_,a, and £_,b, be two series of real numbers. We shall say
that £5°_,a, is dominated by* Z¢_,b, if there exists N €/ such that
|| <16, (n>N).

(That is, |a,| <|b,| except for a finite number of values of n.) In this case we write

o] [e o]
> a,< > b,
n=1 n=1
For example 2,,_] —1)"/n?<Z®_1/2n+ 1) since [(—1)/n%<1/(2n+1) for n>3.
Also 100+ 1 + %+ ---is dominated by 1+ 1 + 1+ - - - . (This shows that Z%_,a,<3Z%_,b,
does not necessarlly imply 3%°_,a,<Z%_,b,.)
At the end of Section 3.4 we mentioned that an absolutely convergent series converges
because its terms are “small.” If the series X2°_,a, is dominated by an absolutely

* Or that . b, dominates 3%_,a,.
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convergent series 25 ,b,, then 3%°_,a, certainly ought to converge absolutely since most
of its terms are no larger than those of 3%°_,b,. This we now prove.

3.6B THEOREM. If ¥7_,a, is dominated by 37°_,b, where Z57_ b, converges absolutely,
then £%°_,a, also converges absolutely. Symbolically, if £%_,a, <<2,, b, and Z%_,15,|
< o, then 5_,|a,| < .

PROOF: Let M=X2_,|b,|. We have |q,|<|b,| for n > N. Hence if s,=|a,|+ - - - +|a,],
we have, for n> N,

S, <laj|+ -+ +lay|+]by o+ Hby|<|ay|+ - +]ay|+ M.

n

The sequence of partial sums of £°_,|a,| is thus bounded above and the theorem follows
from 3.2A.

Theorem 3.6B is called the comparison test for absolute convergence since it involves
term-by-term comparison of 27 |a,| and Z5_,|b,|. It is the basis for the other tests in
this section.

ne=1

3.6C. From 3.6B, it follows immediately that for any x €(—1,1) the geometric series
2%, x" converges absolutely. For

00 )
2 X< X |
n=0 n=0

and the series on the right converges (absolutely) by 3.2B.

We emphasize that theorem 3.6B deals only with absolute convergence. Note that the
series 2Z5_,1/n is dominated by the conditionally convergent series 2%°_,(—1)"/n but
the former series does not converge at all. The concept of “dominated” is usable only in
connection with absolute values.

The following result may be deduced from part (b) of 3.2A. We omit the proof.

3.6D THEOREM. If ¥%°_,a, is dominated by 2%_,b, and Z¥_,|a,|=c0, then ZF_,|b,|
=0c0. (That is, if £°_,a4,<2%_ b, and 2 _1la,| = oo, then E°° 1|b |=o00.)

For example, con51der 2°°=1b,,— ol 1/(2n+5) This series dominates 2Z%_,1/3n,
which diverges. Hence 2%°_,1/(2n+5) diverges.

We now give the first important consequence of 3.6B.
3.6E. THEOREM. (a) If 2%_,b, converges absolutely and if lim,_, |a,|/|b,| exists, then
2%_,a, converges absolutely

(b) If Z%_,la,|= o0 and if lim,_, |a,]/|b,| exists, then ZF_,|b,| = o0

n—oo

PROOF: (a) By 2.5B, {|a,/b,|}5-, is bounded. Thus for some M >0,
la,| < M|b,]| (nel).
This shows that ¥ 14, is dominated by the absolutely convergent series 27°_,Mb,. By
3.6B, 3%_,|a,] < .
(b) As in the proof of (a) we have |a,| < M|b,|, so that Z¥_,|b,| dominates Z¥_,(1/
M)-|a,| which diverges. Apply 3.6D.

Thus the series S°_,2n/(n? —4n+7) must diverge. For if we let b,=2n/(n*—4n+7)
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and a,=1/n, then

tim 12 = him n*—4n+17 _1
n—00 n—»00 2n? 2
But
o0 x 1
> la,|= 2 =
n=1 n=1
Thus by (b) of 3.6E,
2n _ S 2n _
= n2—4n+7| ,gl n*—4n+7

The following result, called the ratio test, is very useful in treating specific power
series.

3.6F. THEOREM. Let Z°_,qa, be a series of nonzero real numbers and let

Ay 41

—',hmmf

imin , A= limsup

n—oo

>

n

(so that a < 4). Then

(a) If A <1, then Z%_,|a,| < o0;

(b) If a>1 then Z%_,a, diverges;

(c) If a< 1< A, then the test faxls (That is, no information about convergence may be
deduced.)

PROOF: (a) If 4 <1, choose any B such that 4 < B<1. Then B=A + ¢ for some ¢ >0"
so, by 2.9L, there exists N € I such that

Ay

<B (n>N).

a,
Then |ay,,/ay| < B, |ay .2/ ay+1 < B, and so

an+2 ay+2 | [+
= . < B2
ay an + an
For any k > 0 we have similarly
ay +k Ay ay +1
- |= . < Bk
ay AN+ k-1 ay

Thus
lay 4| <|ay|B* (k=0,1,2,...).

But S2_olay|- B* converges, by 3.2B, since 0<B<1. Thus by 3.6B, S%_i|ay..|
converges. That is, |ay|+|ay, |+ |ay.,|+ - -+ converges. It follows easily that 2°_,|a,|
< o0. This proves (a).

(b) If a>1, then by 29L, |a,,,/a,|>1 for all n> N (for some N €I). But then
lay| <lay 1| <lay.,|<---, and so, certainly, {a,}%_, does not converge to 0. Thus, by
3.1D, ¥%_,a, diverges.



84 SERIES OF REAL NUMBERS

(c) To illustrate conclusion (c), consider first £%_,a,=Z%_,1/n. Here

Ay 41

lim =]

n-w q,

so that a=1=A. The series diverges.
But we shall soon see that S%_,1/n? is a convergent series which also has a=1=A.

From 3.6F we see immediately that if lim,_ |a,,,/a,| exists (and is equal to L, say),
then 25_,|a,| converges if L<1 and Z¢_,a, diverges if L>1, while if L=1, we can
conclude nothing.

Here are some examples to illustrate 3.6F. Consider first £%°_,n"/n!. Here a,=n"/n!
so that

il ()™ (n+1>"_(1 1y
la,]  (n+1)! n"  a" ) =€

But by 2.6C, lim,_ (1+1/n)"=e>2 and so a=e=A. In particular, a>2 so that

E;',° yn"/n! diverges. These computations show that for the series Z¥_,n!/n" we have

=1/e<{ <1 so that T%_,n!/n" converges.
Consider next the series Z2_,x"/n! for some x € R, Here we have

X" lx

T+ X a1

Ay 4y

a

Thus lim,_, |a,.,/a,/ =0, which shows that the series in question converges absolutely
for any real x. (Recall from calculus that the sum of the series is ¢*.)

Finally, let us try to determine the values of x for which %_,x"/n converges
absolutely. For this series we have lim,_, |a,.,/a,/=|x|. Thus the series is absolutely
convergent for |x| <1 and is divergent for |x| > 1. The ratio test fails if |x|=1—that is, if
x=1 or x= —1. But for these values of x the series becomes 3%°_,1/n and Z7_,(—1)"/
n, neither of which is absolutely convergent. Thus 3%_,x"/n is absolutely convergent
only for —1<x <1 (and is convergent for —1 < x<1. )

The last test of this section is called the root test. It will yield an mterestxng general
theorem about power series.

3.6G THEOREM. If limsup, ., V|a,| =4, then the series of real numbers 3%_,a, (a)
converges absolutely if 4 <1, (b) diverges if 4 >1. (This includes the case limsup,_, -

\'Vm =00.)

If A=1, the test fails.

PROOF: If A <1, choose B so that 4 < B< 1. Then by 2.9L there exists N € such
that

Vl0a,| <B (n>N).

This implies |a,| < B"(n> N). Thus £%_,|a,| is dominated by Z%_,B", which is (abso-
lutely) convergent. By 3.6B, =%_,|a, |< 0. This proves (a). If

limsup Vla,| >1
n— oo
then, by 29L, V/|a,| >1 for infinitely many values of »n. But this implies that |a,|> 1
for infinitely many n, and so {a,}5_, does not converge to 0. By 3.1D, £%_,a, diverges.
This proves (b). :
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Note that for the divergent series 3°_,1/n and the series 22_,1/n* (which will be
shown to converge) we have lim,_ \/Ia,,[ =1. [Remembermg from calculus that
lim,_, (logn/n)=0, we have

lim V1/n = lim e{18"/M = %=1,
n—oo n—oo
Thus also,
2
. n 2 — . n _ 2=
I_Lm 1/n —”ango(\/ 1/n ) 1 1.]
Here is a corollary on power series X°°_a,x"

3.6H. THEOREM. Let {a,}>_, be a sequence of real numbers. Then

n=0

(a) If limsup,_,., V|a,] =0, the series 3%_,a,x" converges absolutely for all real x;

(b) If limsup,_,, V|a,| =L>0, then %_qa,x" converges absolutely for |x|<1/L
and diverges for |x|>1/L;

(c) If limsup,_,, V|a,| =o0, then S%_ya,x" converges only for x=0 and diverges
for all other x.

PROOF: We have V|a,x"| =|x|V|a,| . Thus if limsup,_ V|a,| =0, then, for
any x,limsup, . V|a,x"| =|x|-0=0 and by (a) of 3.6G, %_,a,x" is absolutely

convergent. This proves (a). To prove (b) we have limsup,_, V|a,x"| =|Lx|. Again
by 3.6G, £2_,a,x" will converge absolutely if |Lx|<1 and diverge if |Lx|>1. This
proves (b). The proof of (c) is left to the reader.

In any of the three cases in 3.6H the following is true.

3.61. corROLLARY. If the power series 2%
absolutely for all x such that |x| <|x,|.
The following theorem shows that if the ratio test works, so will the root test.

o _od,x" converges for x = x,, then it converges

3.6]. THEOREM. Let {a,}>_, be a sequence of nonzero real numbers. Then

llmsup V |a,| llmsup ik N
- a
and
a
liminf V|a,| > liminf |- )
n—oo n—oo
Hence if the ratio test implies £3°_,|a,| < 0, so does the root test, and, if the ratio test

implies 23°_,|a,|= 0, so does the root test.

PROOF: We will prove (1).
If limsup,_, .|a,,/(a,)|=c0, then (1) is obvious. Suppose limsup,_,|a,.,/(a,)|=A
where 4 ER. Then by 2.9L, if € >0, there exists N €/ such that

Ap 41

a,

<A+e (n>N).
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Thus
lay 1| <(A4 +€)lay],

la 4o <(A+e€)|ay, | <(4+ f)zlaNI-
Indeed, if n> N, we have
|, =|ay 4 (n—w) <(4+€)" " Vayl.

Thus
la,| < B(A+¢)" (n>N)

where B=|ay|/(4 +¢€)", and so
Va, <B'Y"(4+¢) (n>N).
Since B'/"—0 as n—c0, this implies

lim sup \/|a | <A+e

n—oo

But € was an arbitrary positive number, so

a
. n . n+1
limsup Vla,| <A4=limsup
n—oo n—oo

n

This proves (1). The inequality (2) may be proved in similar fashion.
Now, suppose for a given sequence{a,};-, that the ratio test implies convergence for
2%_.la,]- Then the right side of (1) is < 1. Hence so is the left side of (1), which shows
that the root test also implies convergence. In like manner it follows from (2) that if the
ratio test implies divergence, then so does the root test. This completes the proof.

The preceding theorem thus shows that if the ratio test gives definite information
about Z%_,|a,|, then the root test will also. Nevertheless, the ratio test is still valuable
since often it is easier to apply than the root test.

FExercises 3.6

1. Prove true or false: If £%°_,a, is a convergent series of nonnegative numbers and
Z_,b, is a divergent series of nonnegative numbers, then X°_,a,<Z5_ b,
2. Do the followmg series converge?

(a) 2——

n=0
® ,El 1+n 5
© El 4+2"'
3. Show that if |x| <1, then S%_,n'%x" converges absolutely.
4. For any x >0 prove that the series 1 — —2—; + i—:— —...and x— )?:? + —5—'5- — ... converge

absolutely. Using theorem 3.5G find the first few terms in their product. Deduce
sin2x =2sinx cos x.
5. (a) Does the ratio test give any information about the series

B+ +E+E + ()

(b) Does the series converge?
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6. If {a,}_, is a sequence of real numbers, and if lim,_, |a,.,/a,|=L <1, prove that

hmn-—mO n 0
7. For what values of x does the series
3 5 3
X X X
X—
3 5 7
converge?

8. For what values of x does 1+2x+3x2+4x3+ - - converge?

9. If 2F_,|a,| <o and if, for each n€ 1, fb,,+,/b| la,./a,|, prove that Z%_,|b,|
< 0. (Hint: First show |b,|<|b,/ay|*|a,|.)

10. Test the convergence of 2%_,a, where a,=(3—e)3—e'/?)(3—e!/?)---(3—e!/™).

11. Use the root test 3.6G on the following series and state what can be concluded.

© (1+1/n)*"

© X .

n=1 €
12. Show that ¥%_,x"/n" converges for all x € R.

3.7 SERIES WHOSE TERMS FORM A NONINCREASING SEQUENCE

The tests of the previous section fail to give any information about the important
series 2,1/ n% This series has the special property that its terms form a nonincreasing
sequence. Such series are often treated by the integral test familiar from calculus.
However, since we have not talked about integrals as yet, we use another very interesting
test called the Cauchy condensation test.

3.7A. THEOREM. If {a,}¥_, is a nonincreasing sequence of positive numbers and if
22 ,2"a,» converges, then I%_,a, converges.

PROOF: We have

and, for any n€ 1,
Ayt Agny + 00 F Ay < 2'ay.

From these inequalities it follows that

n 0
2 ak< 2 2k02k< 2 2 Ayk
k=1 k=0 k=0 *

Hence for any m € I we have

2 @ < 2 az"

k=0
(why?). Since by hypothesis T%_,2%a < 00, the theorem follows from 3.2A.

The converse of 3.7A is also true.
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3.7B. THEOREM. If {a,} ., is a nonincreasing sequence of positive numbers and if
202", diverges, then £2_,a, diverges.

PROOF: We have

and in general

a2n+l LR azn*l > 2na2nd-l = %(2"'“(12’.“),
so that
n+l n+1
2 ak 2 2 2k+1a2k+1—— 2 2 Aok,
k=1 k 2

The remainder of the proof is left as an exercise. Note the similarity to the proof of 3.2C.
3.7C. COROLLARY. The series 2%_,1/n? converges.

PROOF: For a,=1/n* we have

S 2= S 2. §(l)"<oo.

n=1 n=1 (2" n=1

Hence by 3.7A,

1
2

M

< 00.

0
2 a,=
n=1

Note that for £2_,1/n we have a,=1/n, and so Z_,2"a,,=Z5_,2"-(1/2")= 0. Thus
the divergence of 2 _11/n follows from 3.7B.
The series Z55_ 41/(nlogn) diverges. For here a,=1/(nlogn) and so

n ’l — 1
22”2” 22 2"10g2" z(logZ)

n=2 n=2

which diverges. By 3.7B, £°_,1/(nlogn)= oo.
The series 3*_,1/[n(logn)*] converges. For

L

n

o0

0
1
2"a,n= E —
Ez “ (log2) “~ n?

If the terms of a convergent series form a nonincreasing sequence, they must approach
zero “faster” than 1/n. This result, called Pringsheim’s theorem (although it was
originally discovered by Abel), we now present.

3.7D. THEOREM. If {a,}?_, is a nonincreasing sequence of positive numbers and if
Z%_,a, converges, then lim,_, na,=0.

PROOF: Lets,=a;+ - CIf 2%_,a,= A, then
lim s,=A4= hm Sope
n—oo
Thus lim,_, (s,,—s,)=0. Now

Sogp =Sy =0yttt tay,2a,ta,t 0 Fay,
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and so 0< na,, <s,,—s,. Thus lim,_,_na,,=0 and so
im 2na,,=0. 1
nl n 2na,,=0 €))

But a,,, < a,,. Thus

2n+1
(2n+1)az, 4, <(T)(Z’mzn)-

By (1)
Tim (2n+1)az,., =0. )

The conclusion of the theorem follows from (1) and (2).

Theorem 3.7D is no longer true if we drop the hypothesis that {a,}5_, is nonincreas-
ing; consider the series £°_,a, where

=1 =
=— (n=1,49,16,...),

an
a,= ——15 if n is not a perfect square.
n
Then
& 1,1 1,1, 1 1,1
=—+4—+—+=+—+-+—+_—+--
,E,a" 122 32 4 3 8 9

The partial sums of ¥%°_,a, are thus bounded above by

(L+L+i+...)+(l+_l_+l+...)
22 32 52 4 9
which, in turn, is less than 2 3%_,1/n% Thus =%_,a, converges. But na, does not
approach zero as n—o0, since na, =1 whenever » is a perfect square.

Note also that the converse of 3.7D is not true. That is, there exists a nonincreasing
sequence of positive numbers {a,}>_, such that lim,  _na,=0 but such that 3%_,a,
diverges. Indeed, let a,=2 and let a,=1/(nlogn) for n>2.

Exercises 3.7

For what values of x does ¥¢°_,1/n* converge?

For what values of x does £¢_,1/[n(logn)*] converge?

Prove that for any real x the series 2¢_,1/(logn)* diverges.

(a) If the terms of the convergent series £%°_,qa, are positive and form a nonincreasing
sequence, use 3.7B to prove that lim 2"a,=0.

(b) Deduce another proof of 3.7D.,

5. Use 3.7D to give another proof of 3.2C.

el e

n—o0

3.8 SUMMATION BY PARTS

3.8A. THEOREM. Let {a,}>_, and {b,}>_, be two sequences of real numbers and let
s,=a,+--- +a, Then, for each n€1,
n n

2 aby=s,b,. 1~ 2 Sk (b1 = by)- (1
k=1 k=1
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PROOF: Define s,=0. Since a, =s, — s, _; we have

n

D b= X (s — 5 1)=by(s,=50) + by(s3—5,)+ - -+
k=1 k=1

+bn—l(sn—l_sn—2)+ bn(sn—sn—l)
=Sl(bl— b2)+s2(b2— b3)+ T +sn—1(bn—]_ bn)+snbn

n—1

== 2 (b= b))+ 5,0, = S,b, i +5,b, 4
k=1

== 2 5(bgs1 = b))+ S,b,4 1,
k=1
which proves (1).

If we introduce the notation Ag, =a, ., — a, for any sequence {a,}%-;, then

Ag. = K
K (k+1)—k
resembles a “derivative of g, with respect to k.” The formula (1) becomes
> bids_1=8,b,0— 2 SkAby (2)
k=1 k=1
which resembles the formula
d 4 4
f bds=sb —f sdb

of integration by parts. The formula (1) is thus sometimes called summation by parts. "
A consequence of 3.8A is the following result called Abel’s lemma. It, in turn, yields a
new test for convergence and, in a later section, a theorem on summation of series.

3.8B. ABEL’s LEMMA. If {a,}_, is a sequence of real numbers whose partial sums
s, = 2% ,a; satisfy
m<s, <M (n€I)

n

for some m, M €R, and if {b,};’_, is a nonincreasing sequence of nonnegative numbers,
then '

mb,< > ab,<Mb, (n€l). (1)
k=1

PROOF: From (1) of 3.8A we have "

n n

2 b= 2 5i(be=bepr) + 5,004
k=1 k=1
Since, by hypothesis, b, — b, , >0 and s, < M, this implies

D b <M X (b—bp, )+ Mb,,,
k=1 k=1

=M[(by=by)+(by=b3)+ -+ + (b= byi1) +b,ii]= Mb,.

This proves the right-hand inequality in (1). The left-hand inequality may be proved
similarly.
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Thus in 3.8B, if |2} _ ,a| < M for all n, then |2} _ a,b,| < Mb,.
The following is called Dirichlet’s test.

3.8C. THEOREM. Let {a,}>_, be a sequence of real numbers whose partial sums
s,=2%_,a, form a bounded sequence, and let {b,}%_, be a nonincreasing sequence of
nonnegative numbers which converges to 0. Then X7_,a,b, converges..

PROOF: It is sufficient to prove that the partial sums of X%_,a,b, form a Cauchy
sequence. That is, given € >0 we must find N €] such that

n

2 a by

k=m

Now, by hypothesis, there exists M >0 such that |s,| < M (n€I). Hence for any m,n €1,

n
2 a
k=m

<e (n>m>N).

=|sn_sm—ll < |S"|+ |Sm—l|’

and so

n
> al<2Mm (m,n€l;m< n).
k=m

By 3.8B (applied to {a,}7-,, and {5, }¥_,) this implies
n
> ab|<2Mb,,  (mn€I;m< n).
k=m
But, by hypothesis, there exists N €I such that b,<e/2M (n> N),. Hence 2Mb,, <e
(m > N) so that

n

2 a by

k=m

<e (n>m>N),

which is what we wished to show.

3.8D. For example, from the identity

. . . . +1
2sm§(smx+sm2x+--- +smnx)=cos£—coszn X,

2 2

we see that if sinx /20, then the partial sums s, =23 _,sinkx satsify |s,| <1/|sinx /2.
Thus the series

o0 . [e o] .
sinnx sinnx

Ssinnx g S sinnx
oo = logn
both converge for all real x. (For {1/n}%_, and {1/logn}{_, are nonincreasing and
converge to zero.)

A somewhat different test, called Abel’s test, can be obtained by assuming more about
2%_.a, but less about {b,}%_,.

3.8E. THEOREM. If Z%_,a, is a convergent series of real numbers and if the sequence

{b,}_, is monotone and convergent, then ¥%_,a,b, also converges.

PROOF: Let us suppose that {b,}%_, is nondecreasing and let ¢,=b—b, where
b=lim,_ b, (If {b,}¥_., were nonincreasing, we would let ¢,=b,—b.) Then ¢, >0,
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lim,_, . c,=0, and {¢,};-, is nonincreasing. By 3.8C, then the series Z%_,a,c, converges.
By 3.1C, the series X_,ba, .converges. But a,b,= ba,—a,c,. Thus Z%_,a,b,
=2%_,(ba,— a,c,) converges (again by 3.1C), which is what we wished to show.

For example, the series

—l4l_lyl_1g.
I-1+3—3+5—3+
converges, whereas the sequence 0,4,3,%,%,2,3,... is monotonic and convergent.

Therefore, by 3.8E, the series

1 1 1
0 2+22 3+32 4+42

must converge. Note that theorem 3.3A does not apply to this last series. (Why?)

Exercises 3.8

1. Prove that if 37°_ na, converges, then so does 2;7_,a,.
2. Given that

sin2nx

2sinx

if sinx #0, prove that £°_,cos(2n— 1)x/(2n— 1) converges if x is not a multiple of =.
Prove that £5_,(1/n)log(1 +1/n) converges. (Hint: Use (2) of 3.8A with b, =logk.)
Show that the series 1 =3 —3+4+1—-1—-14 4+ —— ... is convergent.

5. Deduce theorem 3.3A as a special case of Dirichlet’s test (3.8C).

cosx+cos3x+cosSx+ -+ +cos(Qn—1)x=

W

3.9 (C,1) SUMMABILITY OF SERIES

Just as the convergence of the series Z5°_ ,a, is defined to mean the convergence of the
sequence {s,},~, of partial sums, the (C, 1) summability of Z%_,qa, will now be defined
to mean the (C, 1) summability of {s,}5_,. (See 2.11A.)
3.9A. DEFINITION. Let X°_,a, be a series of real numbers with partial sums s,
=a;+ - +a, We shall say that ¥°_,q, is (C,1) summable to 4 if

nlergos”=A (G, 1.

In this case we write
o0
> a,=A (C, ).
n=1

Thus 3%_,(=1)"=—4(C,1). For the sequence of partial sums for this series is
—1,0,-1,0, —1,0,... and this sequence is (C,1) summable to — 1.

The series 1 =2+3—-4+5—6+--- has the sequence of partial sums 1, —1,2, —2,3,
—3,.... As we saw after theorem 2.11B, this sequence is not (C, 1) summable. Hence the
series | —2+3—-4+4+5—-6+--- is not (C,1) summable.

3.9B. DEFINITION. A method T of summability for series is called regular if every
convergent series is 7' summable to its sum. (That is, if 3%_,a, is T summable to A4
whenever 2%_,a, converges to 4.)

3.9C. THEOREM. The (C,1) summability method for series is regular.
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PROOF: If X ,a, converges to A, then the sequence of partial sums {s,}%_,
converges to 4. Hence, by 2.11B, lim,_ s,=A(C,1). This in turn implies 3%_,a,
=A(C, 1), which proves the theorem.

n—oo

39D. We know that a series may be (C, 1) summable even if it does not converge. We
now prove a theorem giving a simple condition on a series which, together with (C, 1)
summability of the series, will ensure that the series does converge. We first need a
lemma.

LEMMA. Let ¥%_,a, be (C,1) summable and let z,=a,+2a,+ - -+ + na,. Then if
t

lim — =0, (1)

n—oo n

the series Z;°_,a, converges.

PROOF: We first show that
(n€l) )
where 6,=n"'(s,+s,+ - - - +5,). We have t,=a,=s,=0, so that (2) is certainly true for
n=1. We proceed by induction. Suppose (2) is true for some value of n. We then have
t,=t,+(n+a, =(n+)s,—no,+(n+1)a,,,
=(n+1)(s,+a, )= no,=(n+t1)(s,. )= (5% +s3,)
=("+2)(sn+l)_(sl+ st S+, 0),

t,=(n+1)s,—no,

and so
o1 =(n+2)s, 01— (n+ 1), .

n+1""
Thus (2) is true for n+ 1 which completes the induction.
Now suppose that 2_,a,=A(C,1). Then lim,_ o,=A. From (2) and (1) we then
have ;

tn n n tn
Sl a1 T (—r?+o")’

(;—"+a")=l-(0+A)=A.

lim s, = lim
n>wo " nowo n+1

In particular, {s,}:-, converges, which proves the lemma.

n=1

THEOREM. If %_,a, is (C, 1) summable and if lim,_, na, =0, then ¥?°_,a, converges.

PROOF: The sequence {na,};_, converges to 0 by hypothesis. By 2.11B, {na,}; -, is
(C,1) summable to 0. That is, )
a,+2a,+--- +na

o n
lim =0.
n—oo n

But this says precisely that lim,_, t,/n=0 where ¢, is as in the lemma. The hypotheses
of the lemma thus hold and the theorem follows.

3.9E. The only method of summability for series that we have discussed in this section
is the (C, 1) method. However, from our development it should be clear that any regular
method of summability for sequences defines a corresponding regular method for series.
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Thus we would say £5_,a, = 4(C,2) if the sequence {s,}_, of partial sums of X°_,a,
is (C,2) summable to A. From 2.11D it then follows, for example that

1-2+3-44+5-6+--- =} (C,2).
(For the sequence of partial sums is, in this case, 1,—1,2,—2,3,—3,....) This (C,2)
method for series is regular since (C,2) summability for sequences is regular.

In a later section we consider methods of summability that do not deal with the
sequence of partial sums. See Section 9.6.

Exercises 3.9

1. Examine whether the following series are (C, 1) summable.
@ 1-3+1-3+1-3+---.
by 1-3+3—-4+---.
(c) 1+O—1—0+1+0—1—0+-~-
2. Does the series (c) of the preceding exercise have the same (C, 1) sum as
1-14+1=-14+1=-1+---?
3. Prove that

I+1=1+1+1=1+1+1-1+"-:
is not (C, 1) summable.
4. Show that a divergent series of positive terms cannot be (C, 1) summable.
5. Prove that if ¥ ,a, is (C,1) summable, then the sequence {a,};_, is (C,1)
summable to 0. (Compare this result with 3.1D.)
6. Prove that if X_,a4, is (C,1) summable, then lim,_s,/n=0 where s,=a,
+a,+ - +a,.

3.10 THE CLASS ?

Most of the important concepts we have so far introduced (set, sequence, function,
series) are involved in the definition of the class (2.

3.10A. pEFINITION. The class 2 is the class of all sequences s={s,}%_, such that
>®_ s2< 0.

The elements of (% are thus sequences. The sequence 0,0,0,... is clearly an element of
(2. By 3.7C, the sequence {1/n}%_, is an element of 2. By 3.2C, the sequence
{l/\/—} >_, is not an element of 2. We shortly show that if s€(* and r& (2 then
s+te

Here are two famous inequalities.

3.10B. THEOREM. (THE SCHWARZ* INEQUALITY). Ifs={s,}%_,and r={¢,}%_, arein {2,
then X%_,s,¢, is absolutely convergent and

o 1/2; o 1/2
(%) (ztz) . 1)

n=1 n=1

00

> st

n=1

*Often called the Cauchy or the Buniakovski inequality.
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PROOF: We may assume that there is at least one s,—say sy—not equal to 0.
Otherwise the theorem is trivial. For fixed n > N and any x € R we have

n

> (xs,+14,)*>0

k=1
Expanding the parentheses on the left we have

n n n
x2 D sE+2x X s+ 2 1220
k=1 k=1 k=1

This can be written Ax>+ Bx + C >0 where

n n
A= > >0, B=2> s, C= > 1%
k=1 k=1 k=1

[From calculus we know that the minimum value of 4x*+ Bx+ C (4 >0) occurs when
x=—B/2A (verify!). This is motivation for the next step in the proof.]
If we set x=— B/2A, we have A(— B/24)*+ B(— B/2A)+ C >0, or B2<4A4C. But

this says
n 2 n
( > sktk) ( > Sk) ( > t/f) (2)
k=1 =1 k=1
If we replace s, #, by |s.|, |%] in (2), we obtain
n n 1/2 / ,  \1/2 o 1/2 1 o 1/2
Swa<(Ea) (Sa) <(£4) (2]

The sequence of partial sums of Z_,|s,#| is thus bounded, and so Z¢_,|s, | <o0. In
particular, £%°_,s,¢, converges by 3.4B. If we now let n approach mfmlty in (2) and use
2.7E, we obtain (1).

3.10C. THEOREM. (THE MINKOWSKI INEQUALITY.) If s={s,}%_, and r={¢,}>_, are in
2, then s+ t=(s,+ 1}, is in > and

[ S (5,4 1,)?

n=1

1/2

PROOF: By hypothesis, the series 3%_;s? and 3%_,t2 converge. Also, the series
S%®_,s,t, converges by 3.10B. Since (s,,+t,,)2—s,f+2s,,t,,+t3, it follows from 3.1C that
S%_ (s, +1,)* converges and

0

0 o0 0
2 (s+0)= T 5+2 2 s+ 2o

n=1 n=1 n=1 n=1
Applying the Schwarz inequality to the second sum on the right, we obtain
o0 1/2/ o 1/2 .
> (s, +1,)° 25+2(2s) (213) + >
n=1 n=1 n=1 n=1 n=1

and so
2

(24 (24 ]

Taking the square root on both sides completes the proof.

2(s+t

n=1
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The class 2 is used as an example of a metric space in the next chapter. For this
purpose it is useful to introduce the notion of the norm of an element in (2,

3.10D. DEFINITION. If s={s,}%_, is an element of (%, we define ||s||,, called the norm of

s, as
o 1/2
_ 2
IISIIz—( > Sn) .

n=1

The norm of a sequence of (* is thus a nonnegative number. (Actually then, the norm
is a function with domain ?> and range [0, c0).) The sequence 0,0,0,... has norm 0. Any
other sequence in f has positive norm. If ¢ € R and s € %, then ||cs|,=|c| 5], (verify).

3.10E. THEOREM. The norm for sequences in > has the following properties:

Isll; >0 (s&€P), (1)
|s|,=0 if and only if s—{O},l " (2)
lesll,=lel-[Isll,  (cER,s€P), (3)
s+l <lsly+lell, (st €P). 4)

PROOF: Only (4) has not been verified. But (4) is just a restatement of the Minkowski
inequality.

3.10F. Do not read this section unless you know a little bit about vector spaces.

First of all, since s+ ¢€ (? if s€ (2 and ¢ € (2, and since cs € 2 if cE R, s E 2, it is clear
that 2 is a vector space over the real numbers.

In n-dimensional Euclidean vector space, a vector {s,,...,s,> has length (2% _,s?)'/%
The dot (scalar) product of two vectors {s,,...,s,> and {t,...,2,> is equal to X% _ 5,7,
and is in absolute value less than the product of the lengths of the two vectors. That is,

n n l/2 n 1/2
$ st <( $ ) ( $ ) . *)
k=1 k=1 k=1

Thus the norm (Z¢_,s7)'/? of a sequence in f* is analogous to the length (2% _ s2)'/?
of a vector in n-space. The Schwarz inequality corresponds to (*). The Minkowski
inequality states that the “length” (norm) of the sum of two vectors (sequences) in (2 is
less than or equal to the sum of their lengths. In n-space the corresponding fact is that a
straight line joining two points is no longer than any broken line joining them.

Exercises 3.10

1. Which of the following sequences are in 2?

@ [logn }w 2
® {7,

(c) {smm}”

2. Give an example of a sequence {s,}%_, in 2 such that Z%_,|s,| =0
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3. Prove that if {s,}%_, € then lim,_ s,=0.
4. Show that equahty can hold in (1) of 3.10B if and only if {#,}%_, is “proportional” to
{s,}o_,—that is, if and only if

t,=As,

' (neT)
for some AER.

5. If {a,}%_, € % prove that 3%_,a,/n converges absolutely.

. Prove that if £2_|a,| < oo, then {a,}%., is in 2

7. For each k€1 let ¢, be the sequence 0,0,...,0,1,0,0,...,all of whose terms are 0
except the kth term, which is equal to 1. Show that e, —¢l|,= V2 if k). What is

llexll,?
(In n-space can you find infinitely many vectors of length 1 such that any two of the
vectors are distance V2 from each other? Answer: No. In n-space how many such
vectors can you find? Answer: n.)

8. If a,>0(ne€ ) and if £_, a, converges, prove that

(=)

2 -
n
n=1

converges.

3.11. REAL NUMBERS AND DECIMAL EXPANSIONS

The theory of infinite series enables us to treat more carefully the connection between
real numbers and “decimal expansions” first mentioned in Section 1.7.

We consider only expansions for numbers in [0, 1]. Here is the definition of decimal
expansion.

3.11A. DEFINITION. A decimal expansion is an infinite series £%_,qa, /10" where each q,
is an integer, 0< a, <9.

It is, of course, customary to write the decimal expansion 2%°_,qa, /10" as .a,a,a;" - -
The number aq, is called the nth digit of the decimal expansion. We now show that every
decimal expansion “represents” a number in [0, 1]. ~

3.11B THEOREM. Every decimal expansion converges to a number in [0, 1].

PROOF The decimal expansxon 2%_,a,/10" is clearly dominated by the series
.19/10" But 3%°_,9/10" is (absolutely) convergent and thus, by 3.6B, so is 25_,a,/

4SS

1
n=1 10

Thus 0<% 1a,/10"<Z¥_,9/10"< 1 and the proof is complete.

3.11C. perFINITION. If the decimal expansion 2¢_,a,/10"=.a,a,a," - - converges to x €
[0,1], we say that .q,a,a,---is a decimal expansion for x (or that x has the decimal
expansion .a,a,a,- -+ ).
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Thus 3.11B tells us that every decimal expansion is the decimal expansion for some
x €[0, 1]. We next show that each x €[0, 1] has at least one decimal expansion.

3.11D. THEOREM. If x €[0,1], then there is a decimal expansion converging to x.

PROOF: Suppose first that x can be written as x=k /10" for some k, n €I where
k<10". Then k=a, 10" '+a,-10" 2+ .-+ +a, for some integers a,, Thus x=a,/10
+a,/10%+ - - - +a,/10" so that .a,a,- - - @,000- - - converges to x.

If x cannot be written as x =k /10" for any n€ I, then x lies in one of the ten open
intervals (0, {5), (3%, &)s---» (35> 19). If xE(m/10, (m+1)/10), let a,=m. Then x —.q,
<45. Now x lies in one of the ten open intervals

a a 1 a) 1 a, 2 a, 9 49 10
(E’ﬁ+ 100)’(T6+ 100°70 T 100)""’( 0 100’10 100)'

a p a  p+l
XE(10+100’10+ 100 )

Let a,=p. Then x—.a;a,<f. Continuing in this fashion we can define a decimal
expansion .a,a,a,- - - that clearly converges to x. This completes the proof.

If

Unfortunately, some numbers in [0, 1] have more than one decimal expansion. For
example, 1 =0.5000---and 1=0.4999--- . Indeed, since 1=0.999- - we have 1/10"=
.000---0999- - - (where n 0’s precede the string of 9’s). From this and the proof of 3.11B,
the reader should have no difficulty in proving the following result.

3.11E. THEOREM. Every decimal expansion that ends in a string of 9’s converges to a
number of the form k/10". Conversely, every number in (0, 1] of the form k/10” has a
decimal expansion ending in a string of 9’s. Thus every number in (0,1) of the form
k /10" has (at least) two decimal expansions, one ending in a string of 9’s and another in
a string of 0’s.

The next theorem enables us to prove that any number in [0, 1] not of the form k /10"
has precisely one decimal expansion.

3.11F. THEOREM. If the two decimal expansions .a,a,a;- - - and .b,b,b,- - - are distinct
(that is, if g, # b, for some k €I), and if neither expansion ends in a string of 9’s, then
they converge to different sums.

PROOF: Let n be the largest integer such that q,=b, (k<n). Then a,=b,, a,
=b,,...,a,=b,, but a,, ,7#b,,,. Let us assume, say, that a,, ,>b,,,. Then q, ,
>b,,.,+1 and so

.a,,,000 - >.b_,,000- -+ +0.1000- - - =.b,,000- - - +0.0999- - -
=‘bn+1999' o >'bn+1bn+2bn+3. )

since .b,b,---does not end in a string of 9’s. Certainly, then, .a,,,a,,,8,,3 " >.
by 1by42b,45° - and so .a,a,a5- - - >.b;b,b,.... This proves the theorem.

3.11G. coroLLARY. If x€&(0,1) is not of the form k /10", then x has one and only one
decimal expansion. If x is of the form k/10”, then x has precisely two decimal
expansions.
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PROOF: The proof follows directly from 3.11D, 3.11E, and 3.11F. (Verify!)

Exercises 3.11

1. A repeating decimal expansion is one of the form
.@,ay° - a,biby bbby bbby b,

Show that the decimal expansion of a rational number is repeating. (Hint: If x=p/q,
calculate the decimal expansion for x by repeated short or long division and consider
the number of possible remainders.)

2. Conversely, show that every repeating decimal expansion converges to a rational

number.
. Prove that between any two distinct real numbers there is a rational number.
4. Prove that the open interval (0, 1) is equivalent to the open square

{({xp)l0< x,y <1}.

W

3.12 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 1, 2, AND 3.
I. Some results from set theory.

3.12A. The following result is known as the Schréder-Bernstein theorem.

THEOREM: Let 4 and B be disjoint nonempty sets. Suppose that 4 is equivalent to a
subset of B and that B is equivalent to a subset of A. Then 4 and B are equivalent.

PROOF: We begin the proof as follows: By hypothesis, there is a 1-1 function f from
A onto a subset B, of B, and a 1-1 function g from B onto a subset 4, of 4.

Fix x€A. If x€A — A, then x is not the image under g of any point in B. In this case
we say that x has no ancestor. However, if x € 4,, then there is a (unique) y € B such
that x=g(y). In this case we say that y is an ancestor of x. Next, consider this y. If
Y € By, then there is a unique z €4 such that f(z)=y. We then say that z is an ancestor
of y and an ancestor of x. On the other hand, if y € B— B,, then y has no ancestor and y
is the only ancestor of x. Note that y, if it exists, is equal to g ~!(x), and z, if it exists, is
equal to f ~!1(»)=f""[g " (x)]. Thus for any x € A, the ancestors of x are the elements of
those sets in the sequence

g7 S 7' @] (T e )]} *)

that are not empty (and hence consist of a single point of B or A). Of course, if any term
of (*) is empty, then so are all the subsequent terms.

So any x €A has 0,1,2,- - - or possibly infinitely many ancestors. (If the same ancestor
occurs more than once in (), it should be counted as many times as it occurs. Can the
same ancestor occur exactly twice?) Let 4, be the set of all points in 4 which have
infinitely many ancestors, and let A,, A be respectively the sets of all points in 4 that
have a (finite) odd or even number of ancestors. Let B,, B,, By be the corresponding
subsets of B.

EXERCISE: Finish the proof.
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3.12B. By a partially ordered set we mean a set 4 together with a relation < between
some but not necessarily all elements of 4 satisfying

x<x  (xEA), (M
x<y,y< imply x=y (x,y €EA), 2)
x<y,y<z imply x<z (x,y,z€E€A). 3)

More precisely, < is a subset of 4 X 4 and hence is a set of ordered pairs {(x,y) where
x,y €EA. Instead of writing {x,y)E < we write x < y.
For example, let X be any nonempty set and let 4 be the family of all subsets of X. If
x,y €A, define x < y to mean x Cy (remember that x and y are subsets of X'). Then the
relation x < y holds for some of the x,y €A and it is clear that the conditions (1)-(3) are
satisfied. Hence A4, the family of subsets of X, in “partially ordered by inclusion.”
For another example let A=1={1,2,---} and define x < y to mean that x divides y
(that is, that y is an integral multiple of x). Thus 4 <24, 5 < 24. Note that 5 <24 does not
imply 24 <5

EXERCISE: Show that (1)—(3) are satisfied in this example.

3.12C. Suppose 4 is a set partially ordered by the relation <. If BC A, xE A4, we say
that x is an upper bound for B if

b<x (bEB).

Thus in the last example, if B=({3,6,10}, then 120 is an upper bound for B.
Next we define a chain in 4 as a subset B of A4 such that any two elements of B are
comparable. That is, we say B is a chain if, whenever x,y € B, either x< y or y <

EXERCISE: Let X,Y be nonempty sets. Let 4 be the set of all 1-1 functions f from
nonempty subsets of X into Y. If f,g € A, define f< g to mean that g is an extension of f.

1. Prove that this definition of < makes A a partially ordered set.
2. If B is any chain in 4, prove that B has an upper bound.

3 12D. Let A be a partially ordered set. If x € 4, we say that x is a maximal element of
A if there is no element y € A distinct from x, such that x < y. A famous result of set
theory is:

ZORN’S LEMMA. Let 4 be a nonempty partially ordered set. Suppose that every chain
in A has an upper bound. Then 4 contains a maximal element.

EXERCISE: Use Zorn’s lemma to prove the following:

THEOREM: Let X, Y be nonempty sets. Then either X is equivalent to a subset of Y,
or Y is equivalent to a subset of X.

3.12E. Here is a description of Russell’s famous paradox.
Let A be the set of all sets which are not elements of themselves. That is,,

={X|XgX}.
We ask the question, “Is 4 an element of itself?”

Suppose 4 € A. Then, since 4 consists only of sets that are not elements of themselves,
we must have 4 & 4—a contradiction. On the other hand, suppose 4 & A. But then, by
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definition of 4, we must have 4 € 4—again a contradiction. So both statements 4 € 4
and A €A lead to contradictions! Something is obviously wrong.

Modern theories of sets attempt to avoid Russell’s paradox (and others) by restricting
in one way or another the use of the term “set.” Only certain collections of objects may
be called sets. In one theory it is permissible to talk about the collection A of all sets
which are not elements of themselves. It just turns out that 4 is not a set. Since the
elements of A are sets it is then clear that A €4 and no contradiction arises. (That is,
AZ A does not imply 4 € 4.) In another theory it is not necessarily permissible even to
form the collection of all sets with a certain property. However; it is permissible to form
the set of all subsets of a given set, and (important with respect to Russell’s paradox) to
form a set by collecting all elements within a given set that have a specified property.
Thus according to this theory, given a set Y we could define the set 4 where

A={X|X€Y and XgX)}.

EXERCISE: Show that assuming 4 €A leads to a contradiction. Deduce that 4 £A4.
Prove that A & Y. Note that no contradiction arises.

We wish to reassure the reader that although we have been glib about the use of the
word “set” (see the first sentence of chapter 1), all examples called sets in this book are
indeed sets even according to the more restrictive usage required by the various rigorous
theories.

Il. On divergent series.

3.12F. Abel wrote in 1828: “Divergent series are the invention of the devil, and it is
shameful to base on them any demonstration whatsoever.”

Indeed our modern attitudes toward and definitions of convergence and divergence
were imposed on mathematics at about that time, largely by Abel and Cauchy.
Mathematicians of earlier generations were well aware of the pitfalls involved in using
divergent series but nevertheless used them under more or less restrictive conditions.
Many of their results are correct when interpreted according to an appropriate summa-
bility method. Others of their results are correct as they stand because they involve series
that are in fact convergent. Even these correct results were often derived by nonrigorous
methods.

For the reader who can manipulate complex numbers we present a typical nonrigorous
argument which will produce the formula

1.1 .1 .1 o
12+'§E+§E+-7—5+.“ g (l)

(This formula, incidentally, is not easy to derive rigorously. It is usually established
either with Fourier series or with the theory of analytic functions of a complex variable.)
Let
s=l—z4+22—23+-..

where z is a complex number. Then

zs=z—22+2— =l—-(1—z+42*—--"),

zs=1-—s,
so that
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Hence
L =l—z+z2—23+---
1+z
Set z=¢". Then
1 e .. )
1+ e?
Using the formula e’®?=cos o § + isin « , we see that the real part of the right side of
(2) is 1-cos@ +cos28— - - - . The left side of (2) is equal to

1 1+e® _1+4cosf—isinf
l+e? 14+e ® 2+2cosf

whose real part is 1. Hence, from (2),

%=1—cos€+cos20—cos30+ cee

Integrate term by term from # =0 to § =1 to obtain

2 3

—;—=t—sint+ sin2¢  sin3¢ .

or

Integrate again from /=0 to = x. Then

x2 (1—cos2x) (1—cos3x)
—4—=(1—-cosx)— > + 7 —
Now set x = . Since cosnm=1 if n is even, cosnm= —1 if n is odd, this yields
7 2 2
7] =2—-0+ 7 0+ 7

from which (1) follows.

EXERCISE: Criticize the above derivation. What parts, if any, are wrong? What parts
. . oo . »
do you feel require justification that has not yet been presented?

lll. A really general summability theorem.

3.12G. Let T=(c,,)m -, be an infinite matrix of real numbers. Given a sequence
{$,}=1 of real numbers, define a sequence {1,}%_, by

[m= 2 Cmnsn (m=l’2’.‘.)' ~ (*)

(Thus the column vector of the ¢, is the product of the matrix T with the column vector
of the s,.)
We say that {s,};_, is T summable to L € R if (the series in () all converge and)
lim 7,= L.

n—oo
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EXERCISE: Suppose T is the matrix

Bl= W= N= O
o O
o O O

FNT

‘
o B W N —
al-

L

Show that T summability is precisely (C, 1) summability.
EXERCISE: Show that (C,2) summability is a special case of T summability.

3.12H. We recall from 2.11H that a summability method is said to be regular if it sums
every convergent sequence to its limit.

We now state conditions on the c,,, that turn out to be both necessary and sufficient
for T summability to be regular. These conditions are

A. There exists M >0 such that

D el <M (m=1,2,---).
n=1
B. lim > ¢, =1
m-—oo nel
C. ”!imwcm,,=0 (n=1,2,---).

Notice that 4 and B are conditions on the rows of T'=(c,,,), while condition C applies to
the columns.

EXERCISE: Fill in the details of the following proof that conditions 4, B, C are
necessary if T summability is to be regular.

Suppose T is regular. That is, suppose that whenever {s,}_, converges to L then each
series in (*) is convergent, and {¢,,} 5 _, converges to L. To show that C holds, fix n and
define {s,} as follows:

5, =0 (k#n),
s, = 1.
Then {s,} converges to 0. Calculate the corresponding {z,,} and apply regularity.

To show that B holds, consider s,=1 (n=1,2,...).

Now we have to show that A must hold. This is the hard part.

First show that

o0
D leml <o (m=1,2,...). (1)
n=1
To do this, assume
o0
2 el =00
n=1

for some m. Then there exists {¢,} converging to zero such that

o0

> €]l = 0. )

n=1
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(Why") Let s, =¢, for those n such that c,, >0 and let s,= —¢, for those n such that
»<0. For this {s,} show that ¢, is given by (2), which contradicts our assumption of
regularlty Hence (1) holds.
Let

= 2 |Cmn|<oo (m=1,2,)
n=1

To show that condition 4 holds it is enough to show that {k,,} is bounded. Again, prove
by contradiction.

Assume {k,} is not bounded. Justify all the following assertions. Let n, be any
positive integer. Then there exists m, such that

ny—1

2
2 lemal <1, Ky > 1242,

n=1

Then there exists n, > n; such that

It follows that

ny—1

Dl > 12

n=n

Now there exists m,>m, such that
ny—1

2 lemal <1, K, >22+2.

n=1

Then there exists n; > n, such that

2 |l <1.
n=njy
It follows that
n3—1
2 [l >22
n=n,

Continuing in this manner, define
n<n< - <n<- and m<m,<- - <m <+

such that, for each r=1,2,...,

n,—1 oy —1 o0
2 |Cm,n|<l’ 2 |cm,n|>r2’ 2 lCm,n|<l'
n=1 n=n, n=n,,

Now define {s,} as follows:

Ifn,.<n<n, ., let
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Then {s,} converges to zero. Finish the proof by showing that 7, >r—2. This is a
contradiction (why?) and the proof is complete.

3.121. Now we prove that conditions A4, B,C are sufficient for 7 summability to be
regular.

Assume A4, B, C. Suppose {s,} converges to L. We must prove that {1, } also converges
to L. We have

o0
t,—L= 2 cpsy— L

mn©>n
n=1

o0

= 2 cmn[sn_L]+Ll: § Cm,,—l}.

n=1

EXERCISE: Finish the proof.

Consult the book Divergent Series, by G. H. Hardy (Oxford, 1949), for more material
of this nature.

IV. More about the product of series.

3.12). ExercisE: The assumption in 3.5G of absolute convergence for ¥%_,a, and

n=0
20 ob, cannot be weakened simply to convergence. Demonstrate this by taking
(-1
a=b = — (k=0,1,2,...)
Vk+1

and showing that _,c, diverges. However, a stronger theorem than 3.5G can be
proved.

3.12K. MERTEN’S THEOREM Suppose X7°_.a, converges absolutely to 4, and Z5_4b,
converges (not necessarily absolutely) to B. Then ¥°_,c, converges to C=AB, where

n

=2 ab,_y (n=0,1,2,...).
k=0

SKETCH OF PROOF:

case I; B=0. It must be shown that C,—0 as n—oo, where C, =27 _,c,. Let

n 0
B,= X b, a= 2 |g|<ox.
k=0 k=0

First show that
C,=ayB,+aB,_,+---+a,B,, (n=0,1,2,...).
But B,—0 as n—>o0 (why?). Hence given € >0 there exists N € I such that

|C,|<|a,By+ -+ +a,_yBy|+ea (n>N).



106 SERIES OF REAL NUMBERS

cASE II; B#0. Let
by=by— B,
b,=b, (n€l).

Then 3¥_b, =0. Apply Case I to 23_qa, and Z5_.b;.

EXERCISE: Fill in the details and finish the proof.

MISCELLANEOUS EXERCISES

12.

. Suppose f: X—7Y.

(a) If 4 c X, show that 4 Cf~'[f(4)].

(b) If B C Y, show that f[f~(B)]C B.

Suppose f: X— Y. Show that f is onto if and only if
E=f{f~'(E)]

for every ECY.

. Suppose f: X— Y. Show that fis 1 —1 if and only if

A=f"1f(4)]
for every A C X.
Let s,=1 and

Spe1= V2+s, (n>2).

Show that {s,}- . is bounded and nondecreasing. Then compute lim
Prove that {nx"}$_, converges to 0 for every x such that 0< x<1.
Let {s,};-, bea sequence of real numbers Prove that {s,}_, converges to L if and
only if every subsequence of {s,}y_, has a subsequence that converges to L.

Let {s,};-, bea bounded sequence of real numbers. Let 4 be the set of all numbers
L such that {s,} =1 has a subsequence that converges to L. Prove that

n—oo n

n=1

limsups,=1lu.b.4.

n—oo

Let A be a nonempty set and let
X,CA,Y,CA (nel).
(a) Prove that
“,,@,L{}f X,U ligiogf Y,Climinf(X,U Y,)
and that equality need not occur.

(b) Prove that
limsup X, U llmsup Y, = hmsup(X uvy,).

n—oo

. Prove lim = 1. (Begin by setting 5, =n'/"—1 and use the binomial theorem.)
10.

11.

n—>oo

Prove that E°°_ l/n(""/") diverges.

Suppose that @, >0 (n€) and that Z%°_,q, converges. Prove that £%°_,Va,aq,,,
converges.

Prove that 1 belongs to the Cantor set but is not an end point of any of the open
intervals removed.
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13. The following game was invented by S. Mazur. Player A owns the irrationals in
[0,1]; player B owns the rationals in [0,1]. One player (either A or B) starts by
choosing a closed interval in [0, 1] of length <1. The second player now chooses a
closed interval of length <% inside the interval already chosen. The first player now
chooses an interval of length <} inside the preceding interval, and so on. By
Theorem 2.10E there is a unique point x in all of these intervals. If x is irrational,
then A wins. If x is rational, then B wins.

Prove that A can always win, independent of B’s strategy.



4

LIMITS AND
METRIC SPACES

4.1 LIMIT OF A FUNCTION ON THE REAL LINE

In Chapter 2 we define limit of a sequence. We now recall from calculus the definition
of limit of a “function of a real variable” on which are based the definitions of
continuous function and derivative. Later in the chapter we generalize to a wide class of
spaces (called metric spaces) which includes the real line R as a very special case.

Let a € R, and let f be a real-valued function whose domain includes all points in some
open interval (a — h,a+ h) except possibly the point a itself.

4.1A. DEFINITION. We say that f(x) approaches L (where L € R) as x approaches a if
given € >0, there exists § >0 such that

|f(x)—L|<e (0<|x—a|<9).

In this case we write lim,_f(x)=L or f(x)—L as x—a. We sometimes say “f has the
limit L at a” instead of “f(x) approaches L as x approaches a.”

We emphasize that the point a need not be in the domain of f. You remember from
calculus (we hope) that lim, _,(sinx/x)=1, even though sinx /x is not defined for x =0.
We verify this limit in a later chapter, after we give a rigorous definition of sinx.

Consider Figure 12. In order for f(x) to approach L as x approaches a the following
must be true: Given any e parentheses about L there must exist § parentheses about a
such that every arrow which begins inside the § parentheses (except possibly the arrow, if
there is one, that starts at @) must end inside the € parentheses.

Roughly speaking, the following can be seen on the x-y graph of a function f such that
lim,_,,f(x)= L: As the x coordinate of a moving point on the graph gets close to a (from
either the right or the left), the height f(x) of the point heads toward L. Be sure to think
out why this is a geometric interpretation of definition 4.1A. For example, the functions
in Figures 13, 14, and 15 all satisfy lim,_ ,f(x)=L. (An empty dot, as in Figure 15,
indicates a point not on the graph.) On the other hand, the function in Figure 16 has no
limit at a. This is because f(x) gets close to 3 when x gets close to a on the left, while
f(x) gets close to 1 when x gets close to a on the right. Hence there is no single number
L such that f(x) gets close to L when x gets close to a.
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NL + €

VL —¢€
a+ér

ac

a— 6N

FIGURE 12,

y = f(x)
flo)=x +1

(oo <x < )

FIGURE 13. Example 1 of lim f(x)=L
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f(x)=x+1 (x < 2)

=(x—22+3 (x>2)

y=ftx)

a=2
FIGURE 14, Example 2 of }i_r'naf(x)=L

y
fx)=x+1 (x<2)

=(x-2?2+3 (x>2
f(2) =4 |
y = ftx)
L=3—
I I
a=2

FIGURE 15. Example 3 of li_’maf(x)= L
110
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y
flx)=x+1 (x<2)
=x—-2?2+1 (x>2)
— y = flx)
l | | | x
a=2
FIGURE 16. Example of a function f such that f(x) does not approach a limit as x approaches a

For a final pictorial example, consider Figure 17. This shows the graph of f where

f(x)=sin% (x#0).
Here, as x gets close to a =0, the value f(x) oscillates rapidly. Even if we look on only
one side of q, it is clear that there is no number L toward which the value f(x) tends.
Hence f has no limit at 0.

Now, for some examples with proofs.

First, let us prove lim,_,(x?+2x)=15. Here f(x)=x2+2x, L=15, a=3. Given € >0
we must find 6 >0 such that

|(x*+2x)—15|<e (0<|x=3|<$é). (1)

fex) = sin + (x # 0)

FIGURE 17. The function has no limit at a=0
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We first note that |(x?>+2x)— 15| =|x—3|-|x +5|. We are going to have |x—3|<§. The
question is, how big can |x + 5| be? Without making our final choice of §, let us agree
that when we do choose it we will take § < 1. Then, if |x —3] <8, we will have |x—3| < 1.
Thus x €(2,4) and so x+5€(7,9). Hence |x+5| <9 if [x—3|<8< 1, and so |x —3|:|x+
5|<8-9if |[x—3|<é and 6§ < 1. Let §=min(l,e/9). Then

[x—=3]|x+5|<96<e (Ix=3]<8),

which implies (1). Given € >0 we have found a é [namely 6§ =min(l,e/9)] for which (1)
holds, and this proves lim,_,(x?+2x)=15. Note that in this example a=3 and | f(x)—
L| < e even for x=a.

Vx+3 =2. Here f(x)=Vx+3,L

For a second example we will show that lim,_,
=2 a=1. Given ¢ >0 we must find § >0 such that

[Vx+3 —2|<e (0<|x—=1<8). ()
Multiplying the left side by |(Vx+3 +2)/(Vx+3 +2)|, we see that (2) is equivalent to
(Vx+3) -2
— 0<|x—1|<9)
[Vx+3 +2|
or
|x—1]
— < (0<]|x—1<8). 3
[Vx+3 +2]

If we agree to take 8§ < 1, then |x — 1| < & implies x €(0,2) and hence Vx+3 +2>V3 +
2. Thus if |x — 1| <8< 1, then

=1 8
IVx+3 +2| V3 +2

If we pick §=min(1l,e(V3 +2)), then §/(V3 +2)<¢, hence (3) holds, hence (2) holds,
and we are done.

For an example in the other direction we shall proce what we have already inferred
from Figure 17—namely, that sin(1/x) does not approach a limit as x— 0. For assume
the contrary—that is, assume there exists L € R such that lim,_4sin(1/x)= L. Then for
€=1 there would exist § >0 such that

sm%—L%l (0<|x|<8). )
Now
4n+ )7
| N B
sm(2mr+ 5) =sin B 1

for any n€ I. Thus sin(l1/x)=1 for x=2/a(4n+ 1) and hence for some x €(0,8), since
lim,_ 2/7(4n+1)=0. For this x (4) implies
|[1-L|<]1. %)

Similarly, sin(2nm+37/2)=—1 for n€l. There will thus be an x&(0,8) for which
sin(1/x)= — 1. By (4) again,

. |—1-L|<I. (6)
The reader should be able to deduce a contradiction from (5) and (6). Hence lim,_,
sin(1/x) does not exist.
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4.1B. We wish to emphasize the strong analogy between definition 4.1A and definition
2.2A. Indeed, consider the “table of analogues.”

TABLE OF ANALOGUES

224 4.14
S={s}n=1 f
n x
Sn J(x)
L L
[ a
€ €
N é
n>N 0<|x—a|<$8

If we substitute each entry in the right-hand column for the corresponding entry on
the left, we change definition 2.2A into definition 4.1A.

However, more than a mechanical process is involved here. Corresponding entries in
the table actually “have the same meaning.” For example, S={s,}>_, is the function
(sequence) involved in definition 2.2A, while f is the function involved in 4.1A. Also, s, is
the value of S at n, while f(x) is the value of f at x. Finally, n> N means “n is
sufficiently close to infinity” (but not, of course, equal to infinity), while 0<|x —a| <8
means “x is sufficiently close to a but not equal to a.”

We will now prove a theorem corresponding to 2.7A. The reader should first study the
proof and then see how it could be obtained from the proof of 2.7A by mechanical
substitution from our table.

4.1C. THEOREM. If* lim, f(x)= L and lim,_,g(x)= M, then f(x)+ g(x) has a limit as
x—a and, in fact, lim,_,[f(x)+g(x)]=L+ M.

PROOF: Given € >0 we must find 6 >0 such that
I[f(x)+g(x)]=(L+M)|<e  (0<|x—a|<§). (1)
Since lim,_,f(x)= L, there exists §, >0 such that
If()=LI<5  (0<|x—d|<8)).
Similarly, there exists 8, >0 such that
g(x)=M|<5  (0<|x—d|<8)).
Thus if §=min(§,,6,) and if 0<|x —a| < §, then
f)-L<E,  lsn-MI<%,
and so
I[f(x)+g(x)]=(L+M)|=|[f(x)~ L]+[g(x)-M]|
<If ()= LI+ [g(x) = M| <5 +

£ ¢
5 =€
Thus (1) holds for § =min(§,,8,) and the proof is completed.

* In this chapter, whenever we write a hypothesis such as lim,_, ,f(x)= L it is understood that f is a function
whose domain contains all points whose distance from a is less than some h(h > 0) except perhaps the point
a itself. '
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Using the proofs of 2.7D, 2.7G, and 2.71 as models, the reader should now be able to
prove the following theorem.

4.1D. THEOREM. If lim,_ f(x)=L and lim,_ ,g(x)=M, then

(@) lim,_,[f(x)—g(x)]=L—-M,
(b) lim,_f(x) g(x)= LM,
and if M#0,

(0) lim,_,[f(x)/g(x)]=L/M.

We occasionally need to handle limits of the form lim,_,  f(x).

4.1E. DEFINITION. We say that f(x) approaches L as x approaches infinity, if given
€ >0, there exists M € R such that
[f(x)—L|<e (x>M).

In this case we write lim,_ . f(x)=L, or f(x)—>L as x—o0.

Definition 4.1E requires, of course, that the domain of the (real-valued) function f
contain some interval of the form (c, o0). Note the very strong resemblance of 4.1E to
2.2A.

For example, let us prove that lim,_, (1/x?)=0. Given € >0 we must find M € R such
that

lz—o'<e (x>M). (1)
X

Since (1) is equivalent to
% <Ve (x>M),

it is clear that (1) will hold if we take M=1/Ve .
It is also useful to consider “one-sided” limits.

4.1F. DEFINITION. We say that f(x) approaches L as x approaches a from the right, if
given € >0, there exists >0 such that

|f(x)—L|<e (a<x<a+$).

In this case we write lim,_,,, f(x)= L. (The number L is called the right-hand limit of f
at a.)

We say that f(x) approaches M as x approaches a from the left, if given € >0, there
exists § >0 such that

|f(x)-M|<e (a—d8<x<a).
In this case we write lim,_,_ f(x)= M. (The number L is called the left-hand limit of f
at a.)
Thus the statement lim,_,,, f(x)= L involves only values of f(x) for x to the right of
a, while lim,_,,_ f(x)= M involves only values of f(x) for x to the left of a. It should be
obvious to the reader that lim, _f(x)= L if and only if

Jim, )= lim ()= L

On the other hand, both lim,_,,, f(x) and lim

X—a

_ f(x) may exist without being equal

X—a
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to each other. For example, if

then lim,_,_ f(x)=1 while lim,_,, f(x)=2.
It is not difficult to show that theorems analogous to 4.1C and 4.1D also hold for
limits of the form lim,_,  f(x),lim,_,, f(x),or lim,_,_ f(x). (See problem 15.)
“One-sided” limits always exist for an important class of functions—namely, mono-
tone functions.

4.1G. perINITION. If f is a real-valued function on an interval J C R, we say that f is
nondecreasing of J if
f(x)< f(») (x<y; x,y€J).
We say that f is nonincreasing on J if
f(x)=2f(») (x<y; x,y€J).
We say that f is monotone if f is either nondecreasing or nonincreasing.

Thus definition 4.1G is analogous to definition 2.6A for sequences. As for sequences,
we say that a function f on an interval J C R is bounded above or bounded below if the
range of f is respectively bounded above or bounded below. We then have the following
important result analogous to 2.6B.

4.1H. THEOREM. Let f be a nondecreasing function on the bounded open interval (a, b).
If f is bounded above on (a,b), then lim,_,,_ f(x) exists. Also, if fis bounded below on
(a,b), then lim, ., f(x) exists.

PROOF: If fis bounded above and nondecreasing on (a,b), let

M= Lub J(x)

Given € >0 the number M — e is thus not an upper bound for the range of f. Hence there
exists y €(a,b) such that f(y)> M —e. Let §=b—y. Then

f(b=8)=f(»)>M—e.
Since f is nondecreasing, this implies
f(x)>M—¢ (b—86<x<b).
Hence since f(x) < M for all x €(a,b) we have

l[f(x)-M|<e (b—8<x<b).

This proves that lim,_,_ f(x)= M.

If f is bounded below, a similar argument will show that lim _,. f(x)=m where
m= g'l'b'xe(a,b)f(x)'

If f is nonincreasing on (a,b), the following result may be proved by applying 4.1H to
— f (which will be nondecreasing).

4.11. THEOREM. Let f be a nonincreasing function on the bounded open interval (a,b).
If f is bounded below on (a,b), then lim__,, _ f(x) exists, while if f is bounded above on
(a,b) then lim, _, . f(x) exists.
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We then have the important corollary 4.1J.

4.1J. coroLLARY. If f is a monotone function on the open interval (a,b), and if
c€E(a,b), then lim,_ ., f(x) and lim,_._ f(x) both exist.

PROOF: Suppose that f is nondecreasing. Choose 8 >0 such that (¢—8,c+8)
(bounded open interval) is contained in (a,b). Then the values of f on the open interval
(c¢—0,c) are bounded above by f(c) and hence by 4.1H, lim,_._ f(x) exists. Similarly,
the values of f on the open interval (c,c+ §) are bounded below by f(c). Hence again by
4.1H, lim,_, ., f(x) exists.

If f in nonincreasing we use 4.11 instead of 4.1H. This completes the proof. Note that
we did not assume that (a,b) was bounded.

As long as we are on this subject we may as well define strictly increasing function and
strictly decreasing function.

4.1K. DEFINITION. The real-valued function f on the interval J C R is said to be strictly
increasing if

f)<f(y)  (x<y; xy€J).
Similarly, f is said to be strictly decreasing if
F(x)>f(y)  (x<y; xy€J).

Thus if f is nonincreasing on J, then f is strictly increasing on J if and only if fis 1-1
onJ.

Exercises 4.1

1. (a) If |x—2|< 1, prove that |x2—4|<S5.
(b) If |x —3| <4, prove that |x*— x —6|<0.51.
(c) If |[x+ 1| <4, prove that |x*+1]|<0.331.
2. Let § be any number such that 0<§< 1.
(a) If |x—2| <8, prove that |x?—4|<58.
(b) If |x —3| <8, prove that |x2— x — 6| <68.
(c) If |x+1|< 8, prove that |x*>+1|<78.
(d) If |x—2|< 8, prove that |[x—2)/(x+3)|<6/4.
3. (a) Let f(x)=x2?+4x. Find 8 >0 such that
F(x)=5<d . (O0<|x—1]<8).
(b) Prove directly from definition 4.1A that lim_ ,(x>+4x)=5.
4. For each of the functions in Figures 13-17, draw a diagram of the type in Figure 7.
Relate the diagrams to definition 4.1A.
5. Prove, using only definition 4.1A, the truth of the following statements.
(a) lim2x2+3x= -2.
.ox2—1
®) ;lcl_>m| x—1 =2
(c) lin}) V4—x =2,

6. Prove that if lim,  f(x)=L and lim,_,f(x)=M, then L=M. (Compare with
theorem 2.3B.)
7. If lim,_ ,f(x)=L and c €R, prove that lim

cf(x)=cL.

xX—a
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8. Prove

lim x7—2x5+l
x—>1 x3—3x? +2

9. If cER and f(x)=c for all x €R, prove that lim,_ f(x)=c, where a is any point in
R.

10. Let [x] denote the greatest integer not exceeding x. (For example, [—4]= —
[—4.1]= =5, [15.4]=15.) Prove that if n € I, then

lim [x]=n, lim [x]=n—-1.

x—n*

11. Let
f(x)=[1-x?] (=1<x<).

Does lim,_, f(x) exist? If so, evaluate it.
12. For any a € R prove that lim,_ ,x = a. Then, using theorems from this section, prove
that lim,_, P (x)= P (a) where P is any polynomial function.

13. If f(x)>0 for |x—a|<h and if lim,_,,f(x)= L, prove that L >0.
14. If lim,_,,f(x)= L >0, show that there exists § >0 such that

f(x)>0  (0<|x—a|<3$).

(Hint: Take e=L/2.)

15. If lim,_  f(x)=A and lim,_, . g(x)= B, prove that lim
the same with lim,_,  replaced by lim,_,, and lim,_,_.

16. Let f and g be nondecreasing functions on an interval (a,b) and let h=f—g. If
c€(a,b) prove that lim,_ h(x) and lim,_,,_h(x) exist.

17. If f is a real-valued function on (0, c0) and if

f(x)+g(x)]=A+ B. Do

x—saol

g(x)=f(%) (0< x< ),

prove that lim_  f(x)= L if and only if hmx_,0+ g(x)=L.
18. Write out a definition of

Jim, S()=L.

Prove, for this limit, a theorem corresponding to 4.1C.

19. Give an example of a 1-1 function on (0, o) that is not monotone.

20.- Give an example of a nondecreasing function on [0, 1] that is not strictly increasing.

21. Prove that if f is nondecreasing and bounded above on (a, ), then lim__  f(x)
exists.

22. Let f be real-valued function on R and suppose lim,_ f(x)=L. If {x,}-, is any
sequence of real numbers which converges to a, and if x,7a(n € I), prove that the
sequence { f(x,)}y-, converges to L.

23. Conversely, suppose lim,_,  f(x,)= L for every sequence {x,}%_, such that x,#a
(n€lr) and lim,_ x,=a. Prove that lim,_ f(x)=L.

24. Suppose only that lim,_,  f(x,) exists for every sequence {x,};—, such that x,#*a
and lim,_ x,=a. Prove that lim,_ f(x) exists.

’l—)OO n

25. Use exercises 22 and 23 to give a new proof of theorem 4.1C.
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4.2 METRIC SPACES

4.2A. In the proofs of theorems 2.7A, 2.7D, 2.7G, and 2.71, and their counterparts 4.1C
and 4.1D, the following crucial properties of the absolute-value function were used.

|0]=0, (M
la|>0 (aER,a#0), (2)
la|=|—a|l  (a€ER), (3)
la+b|<|a|+]b]| (a,bER). @)

Now, for x,y € R, the geometric interpretation of |x —y| is the distance from x to y. If
we define the “distance function” p by

p(x.y)=|x—y|  (xyER),
then the properties (1)—(4) have the following consequences for any points x,y,z € R:

p(x,x)=0. &)
(That is, the distance from a point to itself is 0.)
p(x.y)>0  (x#y). (6)
(The distance between two distinct points is strictly positive.)
p(x.y)=p(y,x). (M

(The distance from x to y is equal to the distance from y to x.)
p(x,y) < p(x,z)+p(z,y) (triangle inequality). (8)

[This is proved by setting a=x—z,b=z—y in (4). The inequality (8) says that going
from x to y directly never takes longer than going from x to z and then to y.]

A satisfactory definition of limit can be constructed, not only for R, but for any set M
which has a “distance function” p satisfying (5)—(8). A “distance function” is usually
called a metric.

4.2B. DEFINITION. Let M be any set. A metric for M is a function p with domain
M X M and range contained in [0, o) such that

p(x,x)=0 (xeM),

p(x,y)>0 (x,y EM,x#y),

pxy)=e(y,x)  (xyEM),

p(x,») <p(x,2)+p(z,y) (x,y,zEM) (triangle inequality).

If p is a metric for M, then the ordered pair {M,p) is called a metric space. (In many
cases we abuse language slightly and refer to the metric space {M, p) simply by M. Thus
if we say “let M be a metric space,” there is always a metric p for M lurking in the
background.)

A metric for M thus has all the properties (5)—(8) of the distance function |x — y| for R.

4.2C. Here are five examples of metric spaces.
1. The function p defined by p(x,y)=|x —y| is obviously a metric for the set R of real

numbers. We denote the resulting metric space (R,p) by R'. We call this metric p
the absolute value metric.
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2. Here is another metric for the set R. Define d: R X R—[0, «0) by
d(x,x)=0 (xER),
d(x,y)=1 (x,y ER; x#y).
That is, the “distance” d(x,y) between any two distinct points x,y ER is 1. The
reader should verify that 4 is a metric for R. The metric d is called the discrete
metric. We will henceforth denote the metric space (R,d) by R,. The examples 1
and 2 show that a given set may have more than one metric.
3. Fix nel. If x={x,,...,x,) and y={y,,...,y,) are two ordered n-tuples of real
numbers, define

n 1/2
pxy)=| X (xk—yk)z} :
k=1
[For n=2, p(x,y) is thus the usual distance formula for points in the Cartesian
plane.] We will show that p satisfies the triangle inequality. Thus, if z={z,,...,z,),
we must show p(x,y) <p(x,z)+p(z,y). For k=1,...,n let a, = x, — z;,b, = z; — ;.
Then

. 1/2
p(x,Z)=( 2 alf) P
k=1

B 1/2
p(z,y>=( 2~bz) ,
k=1

and
1/2

p(x,y)=[ S (ac+be)?
k=1

We must thus show that
172 172

n 172 n
(Sa) +(24)
k=1 k=1
But this follows from 3.10C. It is trivial to verify that p satisfies the other
requirements for a metric. We denote by R” the metric space formed by the set of
all n-tuples of real numbers with this metric p. The metric space R”" is called

Euclidean n-space. (Note that for n=1, R" becomes the R' of example 1 since

| 1/2
[ 2 (Xk _)’k)z

=|x; =yl
k=1

[ S (a+by)?
k=1

4. Let £ denote the set of all bounded sequences of real numbers. If x={x,}5_, and
y={y,}r-, are points in (=, define

n=1

p(x.y)= Lub. |x,—y,|.

For example, if x={1+1/n}7_,, y={2—1/n}%_,, then
1 1 2
)= Lub. (1+—)—(2——)= Lu.b. —1+—‘=1.
p(xy) 1<1'11<°°i n n l<l:<oo n

Again, it is easy to see that p satisfies the first three requirements of a metric. To
demonstrate the triangle inequality, let z={z,}’_, also be a point in {®. For any
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k&1 we have
|xe =il = 1% — 2 + 2 = yiel < |xe = 20 + 24 — il
< lub. |x,—z,|+ lub. |z,—y,l,
I<n<oo I<n<ow
and so
%=yl <p(x,2)+p(z.7)  (KET).
From this it follows that Lu.b.; ¢, .|X =il <p(x,2)+p(z,y) (Why?), and this is
the triangle inequality for p.
It is customary to denote this metric space {t®,p) simply by {*. (The reason for

the co symbol on the { is usually disclosed in the next course in analysis.)

5. For a final example of a metric space, consider the set > from Section 3.10. For

x,y € (* define p(x,y)=|x—y|,- Then theorem 3.10E shows that p is a metric for
f2. For example, using (3) of 3.10E, we have

p(x.p)=lIx =yl =lI(=1)(y =),
=|=1-lly = xl,=lly — xll,=p(y,x).
Also, for x,y,z € {> we have, using (4) of 3.10E,
p(x.p)=lx=yl=llx—z+z-yl,
<llx=zl+ Iz =yl =p(x,2) +p(2.y).
We denote the metric space {f?,p) simply by 2.

We have thus listed R, R, R", {*, and f? as examples of metric spaces.

It is important to note that if p is a metric for the set M, then p defines a metric for
any subset of M in an obvious way. For example, p(x,y)=|x—y| defines a metric for
any closed interval [a,b] of real numbers.

4.2D. In the next section we will make use of the concept of cluster point.

DEFINITION. Let (M, p) be a metric space and suppose 4 C M. The point a € M is called
a cluster point of A in M if, for every >0, there exists a point xEA4 such that
0<p(x,a)< h.

That is, a is a cluster point of A4 if there are points of A distinct from a but arbitrarily
near a. Note that ¢ need not belong to 4.

For example, let M=R'and let A={1,4,4,4,...}. Then 0 is the only cluster point of
A in M. See Figure 18.

0

wl= ¢

1
3

FEK

N|— N=

FIGURE 18. The only cluster point of 4= {1, ,oe}is 0.

1
"4

Exercises 4.2

1. Show that if p is a metric for a set M, then so is 2p.

2. Show that if p and ¢ are both metrics for a set M, then p+ o is also a metric for M.

3. Suppose p, and p, are metrics for the set M. Prove that max(p,,p,) is also a metric
for M.

4. Let {M,p) be a metric space. Prove that min(l,p) is also a metric for M.
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5. Let

p(x.y)=

—l——i‘ (x>0,y>0).
x )

Prove that p is a metric for (0, o).
6. Let {M,p) be a metric space. Prove that

lo(x.y)—p(x.p)|<p(y,2)  (x.0,2EM).

7. Let €' be the class of all sequences {s,}%_, of real numbers such that Z%_,|s,| < 0.
Show that if s={s,_, and t={1,}_, are in {', then p(s,/)=32%_,|s,—t,| defines a
metric for (',

8. For P{x,,y;»> and Q{x,,y,), define

o(P,Q)=|x,—x;|+ |y =yl

Show that ¢ is a metric for the set of ordered pairs of real numbers.
Also, if
7(P,Q)=max(|x;— x|, |y, —yl),
show that 7 defines a metric for the same set.

9. Let 0 denote the point {0,0> in R2 For 0,7 as in Exercise 4, sketch the following
subsets of R

A={PERo(0,P)<1},

B={P€R2[T(6,P)<l}.
Compare with

C={PERp(0,P)<1},

where p is the metric for R2.
10. If P, Q, R are points in R> and p(P,R)=p(P, Q)+ p(Q, R), what can you say about
the relative position of P, Q, R?
Answer the same question with R, in place of R>.
11. Let A denote the open interval (0, 1). Show that the set of cluster points of 4 in R is
[0,1].
12. If A=(0,1), find the set of cluster points of 4 in R,.

4.3 LIMITS IN METRIC SPACES

If we examine definition 4.1A we see that lim,_,f(x)= L means that given €>0 there
exists 8§ >0 such that the distance from f(x) to L is less than € provided that the distance
from x to a is less than & (but greater than 0). Now that we have stated this definition in
terms of distances, it is not difficult to see how to formulate the corresponding definition
for arbitrary metric spaces. '

Suppose that (M,,p,> and (M,,p,> are metric spaces, that a€ M, and that fis a
function whose range is contained in M, and whose domain contains all x € M, such
that p,(a,x) < h (for some h > 0) except possibly x =a. We also assume that a is a cluster
point of the domain of f.

4.3A. DEFINITION. We say that f(x) approaches L (where L € M,) as x approaches a if
given € >0, there exists § >0 such that

po(f(x),L)<e (0<pi(x,a)<9).
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In this case we write lim,_f(x)=L, or f(x)—L as x—a. If {M,p;>={(M,,p,>=R",
then p,(f(x),L)=|f(x)—L|, p,(x,a)=|x—a|, and 4.3A reduces to 4.1A.

In later chapters we very often consider functions f on the metric space M =[a,b]
(closed bounded interval with absolute-value metric). For this space the statement

lim f(x)=L *)

involves only points x to the right of a (since points in R! to the left of a are not in M).
In 4.1F, L is referred to as the “right-hand limit of f.” However, there is no need for us
to use this terminology as long as we remember on what space f is defined. A similar
remark applies to

lim f(x)=N.

These remarks are also relevant when we define the derivative of a real-valued function
on [a,b].

Here is an example illustrating 4.3A. Let f: >—>R' be defined as follows: If x
={x,}%., €2 let f(x)=x,. That is, the image under f of any sequence in * is the first
term of the sequence. Now let a={a,}%_, be any fixed element of (>. We will prove that
lim,_,f(x)=a,. Given € >0 we must find § >0 such-that the distance from f(x) to a, (in
the metric for R') is less than € whenever the distance from x to a (in the metric for %) is
less than & but greater than 0. That is, we must find § >0 such that

lf(x)=al<e  (0<|x—all,<9),

or
lx; —ay| <e (0<||x—all;<8). (1
But
o 1/2
||x—a||2=[ 21 (xn—an)2:| >[(xl_al)2}1/2=|xl_al"

and so |x, —a,| <||x —a||,. If we thus choose §=¢, then ||x — a|, <= e implies |x; — a]
< ||x—a||, <€ and (1) holds. This proves lim,_ ,f(x)= a,. [Note that a, = f(a) so that we
have shown lim,_,, f(x)=f(a).]

We most often apply definition 4.3A to real-valued functions—that is, when (M,;p,>
= R,. The proof of the following theorem is then an exact duplicate of the proofs of 4.1C
and 4.1D. .

4.3B. THEOREM. Let (M,p)> be a metric space and let a be a point in M. Let f and g be
real-valued* functions whose domains are subsets of M. Iff lim,_,f(x)=L and
lim (x)= N, then

X—)ﬂg
lim [ f(x)+g(x)]=L+N,
lim [ f(x)—g(x)]=L-N,
lim [ f(x) g(x)]= LN,
* Henceforth, whenever we use the phrase “real-valued function,” we mean a function with range in R'.

That is, the metric in the range is the absolute-value metric.
1See footnote p. 113.
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and, if N0,
f(x)

xl—lg g(x)

L
~-

PROOF: We prove only that lim,__,f(x)g(x)=LN. (Compare with the second proof

of 2.7G.)
Since lim,_ ,g(x)= N we have, for some §,>0,
lg(x)=N|<1  (0<p(x.a)<8,).
Thus
lg(x)|<IN|+1=Q  (0<p(x,a)<$)).
Now

f(x)g(x)— LN=f(x)g(x)— Lg(x)+ Lg(x)— LN
=g(x)[f(x)- L]+ L[g(x)=N],
|f(x)g(x)— LN|<|g(x)|-|f(x)— L|+|L|-|g(x)— N|.
Hence if 0<p(x,a)<$,,

|/ (x) g(x)— LN|< Q-|f(x) = L|+|L]|-|g(x) = N|. (1)
Given €>0 there exists §,>0 such that
QIf(x)—LI<5  (0<p(x,a)<8y), 2)
and there exists §; >0 such that
ILllg(x)=NI<5  (0<p(x,a)<8). 3)

If we let 8 =min(8,,8,,8;), then from (1), (2), and (3) it follows that
f(x)g(x)~LN|<e  (0<p(x.a)<8).
This proves lim,_ ,f(x)g(x)=LN.

43C. A sequence of points in a metric space M is a function from / into M. As with
sequences of real numbers, we will use the notation {a,};’_, for a sequence of points M.
For such sequences, convergence is defined as in 2.2A and 2.3A.

DEFINITION. Let (M, p) be a metric space and let {s,}%_, be a sequence of points in M.
We say that s, approaches L (where L € M) as n approaches infinity if given € >0, there
exists N € I such that

p(s, L)<e (n>N).

In this case we write lim,_, s, = L, or s,—L as n—oc0 and say that {s,}%_, is convergent

in M to the point L.

n— oo

Cauchy sequences are defined as in 2.10A.

4.3D. DEFINITION. Let (M,p) be a metric space and let {s,}5_, be a sequence of points
in M. We say that {s,}°_, is a Cauchy sequence if given € >0, there exists N €I such
that

p(s,,,8,) <€ (m,n>N).



124 LIMITS AND METRIC SPACES

The proof of the following theorem is identical to that of 2.10B.

4.3E. THEOREM. Let (M,p) be a metric space. If {s,}%_, is a convergent sequence of
points of M, then {s,}_, is Cauchy.

43F. Now comes a very important point. For some metric spaces there are Cauchy
sequences which are not convergent. That is, theorem 2.10D cannot be extended to all
metric spaces.

For example, let M be the set of all points {x,y) in the Euclidean plane R? such
that x?+y2<1, with the R? metric used as metric for M. The sequence 4=
{<0,n/n+1)}7., is a Cauchy sequence of points in M but there is no L € M such that 4
is convergent to L! (Draw a picture, then verify.) Hence the sequence of 4 points of M
does not converge in M.

Of course, the sequence 4 considered as a sequence of points in R 2 does converge to
the point <0,1» in R2 But the fact remains that 4 is not a convergent sequence in M
(according to 4.3C) even though it is Cauchy.

The reader should carefully reexamine the proof of 2.10D to see where properties
special to R' are used and thus why the proof does not immediately extend to cover all
metric spaces as did the proof of 2.10B.

Exercises 4.3

1. Show that a sequence of points in any metric space cannot converge to two distinct
limits.

2. For each n€1 let Pa={x,,y,> be a point in R% Show that {P,}*_, converges to
P={x,yy in R? if and only if {x,}2_, and {y,}%., converge in R' to-x and y,
respectively.

3. Let s={1/k}?.,. Find a sequence {s,}®_, of points in * such that each s, is

distinct from s and such that {s,}%_, converges to s in (%

n=1

4. Suppose that p and o are metrics for M such that
lim x,=x in {M,p)
n—oo
if and only if

lim x,=x in {(M,0).

n—oo

(That is, a sequence converges in {M, p) if and only if it converges in (M, o) and the
limits are the same.) We then say that p and ¢ are equivalent.
Prove that the usual metric for R2, and the metrics 7 and ¢ of Exercise 8 of
Section 4.2 are all equivalent to one another.
5. If p and ¢ are metrics for M, and if there exists k> 1 such that

1
;o(x,y)<p(x,y)<ko(x,y) (x,y €M),

prove that p and o are equivalent.

6. Show that if {s,}¥., is a Cauchy sequence in a metric space {(M,p), then the
sequence of real numbers {p(s,,s,)}5-, is bounded.

7. If {x,}7-, is a Cauchy sequence of points in the metric space M, and if {x,}5_, has
a subsequence which converges to x € M, prove that {x,}5_, itself is convergent to
X

8. Show that if {x,}_, is a convergent sequence in R,, then there exists N €1 such
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that xy =Xy, =Xy., . (That is, a sequence in R, is convergent if and only if all
the terms of the sequence are the same from some point on.)

9. Show that every Cauchy sequence in R, is convergent.

10. Let {x,}-, and {y,}>-, be convergent sequences in a metric space (M, p). Prove
that {p(x,,y,)} %, is convergent in R .

119 Let {x,}-, and {y,}>_, be Cauchy sequences in a metric space {M,p). Prove that
{p(x,,)}2- 1 is Cauchy in R'.

12. Explain why we do not want definition 4.3A to apply if a is not a cluster point of the
domain of f.



5

CONTINUOUS FUNCTIONS
ON METRIC SPACES

5.1 FUNCTIONS CONTINUOUS AT A POINT ON THE REAL LINE

Theorems about continuous real-valued functions on a closed bounded interval [a,b]
such as, “If f is continuous on [a, ], then f takes on a maximum and a minimum value,”
and “If f is continuous on [a, b], then f takes on every value between f(a) and f(b),” are
tools in the proof of the basic theorems in differential and integral calculus. We deduce
these theorems as special cases of theorems about continuous functions on metric spaces.
However, we first review the concept of continuity in its most elementary form.

Let a be a point in R! and suppose fis a real-valued function domain contains all
points of some open interval* (a— h,a+ h) including a itself.

5.1A. DEFINITION. We say that the function f is continuous at a€R' if lim,_ f(x)

=f(a).

The definition really demands that two conditions be fulfilled in order that f be
continuous at a. The first condition is that the lim _ ,f(x) exist; the second is that this
limit be equal to f(a). In particular, if f(a) is not defined, then f cannot be continuous at
a. For example, the function f defined by '

f)=EX (xeR'x70)

is not defined at x =0 and hence is not continuous at x=0 even though lim,_ y(sinx /x)
exists (and is equal to 1).
However, the function g defined by

sin x
g(x)==

g(0)=1,

is continuous at x =0 since lim,_ ,g(x)=g(0).

(x+#0),

*h>0, of course.
126
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It is often the case that a function f fails to be continuous at a point a because
lim__ ,f(x) does not exist. Consider, for example, the characteristic function x of the
rational numbers. That is,

x(x)=1 (x €R',x rational),

x(x)=0  (x€R',x irrational).
Then x(a) is defined for any a € R! but lim__ ,x(x) does not exist for any a. To see this,
assume the contrary—that lim,_,x(x)=L for some LER'. Given e=1 there would
exist § >0 such that |x(x)—L|<?} if 0<|x—a|< 4. But in the interval (a,a+39), say,
there is both a rational number and an irrational. If x €(a,a+ 8) is rational, we would
have |1 — L| <3, while if x €(a,a+ §) is irrational, we would have |0— L|<i. A contra-
diction follows easily.

On the other hand, most of the functions that are “easy to write down” turn out to be

continuous at all points where they are defined. In Section 4.1, for example, we proved
that lim,_ 5(x*+2x)=15. This shows that the function f defined by

f(x)=x*+2x (xeRY

is continuous at x =3. For f(3)=15 and lim,_, f(x)=15. The next example in Section
4.1 shows that the function g defined by

g(x)=Vx+3 (0<x<2)

x—3

is continuous at x=1.
From theorems 4.1C and 4.1D we deduce the following important result.

5.1B. THEOREM. If the real-valued functions f and g are continuous at a € R, then so
are f+g,f— g, and fg. If g(a)#0, then f/g is also continuous at a.

PROOF: Since f and g are continuous at a_we have
lim f(x)=f(a), lim g(x)=g(a).
[f(x)+g(x)]=f(a)+ g(a). In other “words,”:
lim (f+g)(x)=(f+8)(a).

This proves that f+g is continuous at a. The remainder of the theorem is proved
similarly.

Then, by 4.1C, lim

X—a

A continuous function of a continuous function is continuous. More precisely,

5.1C. THEOREM. If f and g are real-valued functions, if f is continuous at a, and if g is
continuous at f(a), then gof is continuous at a.
PROOF: We must show lim,_ g°f(x)=g°f(a) or,
lim g[f(x)]=g[f(a)]

That is, given € >0 we must find § >0 such that

lelf(x)]-glf(a)]l<e  (0<]|x—a|<5). (1)
Let b= f(a). Now by hypothesis lim,_,g(y)=g(b). Hence there exists >0 such that

lg(y)—gb)<e  (ly=b[<m). )
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(Why didn’t we have to write 0<|y — b| <7?) But, also by hypothesis,
lim f(x)=f(a)
Thus (using n where we usually use €) there exists § such that
lf(x)=f(a)l<n  (Ix—a|<d),
or
If(x)=bl<n  (x—a|<8). €)

Thus if |x —a| < é, then f(x) is within n of b and so we may substitute f(x) for y in (2).
Hence

lg[ /()] -e(B)l<e  (Ix—a]<d),

which implies (1), and the proof is complete. (We give a more elegant proof of this
theorem later on.) See Figure 19.

Nb + 1

S gb) + €
L b —n

g(b) = glf(a))

a+ &M L gb) — €

a — 8\y

FIGURE 19.
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Exercises 5.1

1. Which of the functions in Figures 13-17 are continuous at a?
2. If f is continuous at a, and if ¢ € R, prove that ¢f is continuous at a.
3. If f is continuous at @ and f(a)>0, prove that there exists 4 >0 such that

f(x)>0 (a—h<x<a+h).

(Hint: Set f(a)=2e.)
4. Prove that if f is continuous at a € R', then |f| is also continuous at a.
5. If fis continuous at a and f(a)7#0, prove that there exists 2 >0 such that

|If(x)|>0  (a—h<x<a+h).

6. Prove that if both f and g are continuous at a, then max(f,g) and min(f,g) are also
continuous at a.

7. 1If
f(x)=x (—oo<x< o),
prove that f is continuous at each point in R .
8 If n€rl and

f(x)=x" (—o0<x< ),
prove that f is continuous at each point in R
9. Prove that any polynomial function is continuous at each point in R'.
10. (a) Prove that if
g(x)=Vx (0< x < ),

then g is continuous at each point of (0, o).
(b) Prove that if

h(x)=V1-x*  (=1<x<1),
then 4 is continuous at each point of (—1,1). [Use 5.1C. Note that h=gef where
g is as in part (a) and
f(x)=1-x* (—-1<x<1).]

5.2 REFORMULATION

We have defined “f is continuous at a” to mean lim,_, f(x)=f(a). That is, f is
continuous at a if for any € >0 there exists § >0 such that | f(x)—f(a)|<e if 0<|x—aq|
< 8. However (as you were asked to observe in the last proof), the inequality
| f(x)— f(a)| < € obviously holds if x=a. Thus we need only write |x —a| <8 instead of
0<|x—a|< 8. Here, then, is a reformulation of definition 5.1A.

5.2A. THEOREM. The real-valued function f is continuous at @ € R! if and only if given
€ >0 there exists § >0 such that

f(x)=f(@)<e  (x—al<8).
By 5.2A then, f is continuous at a if for any € >0, there exists § >0 such that, if the
distance from x to a is less than §, then the distance from f(x) to f(a) will be less than e.

[This is sometimes put roughly as “if x is close to a, then f(x) is close to f(a).”] Theorem
5.2A shows that the definition of continuity is based on the metric in R,
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Consider Figure 20. In order for f to be continuous at a, given any e parentheses about
f(a) there must be & parentheses about @ such that an arrow which begins inside the §
parentheses must end inside the € parentheses.

fla)

L fla) — ¢

a—- 6y

FIGURE 20.

In order to give another reformulation of the definition of continuity we introduce the
following definition.

5.2B. DEFINITION. If a€R! and r>0, we define Bla;r] to be the set of all xER'
whose distance to a is less than r. That is,

B[a;r]={x€R'||x—a|<r}.

We call Ba;r] the open ball of radius r about a.

It is clear that B[a;r] is just a fancy way of denoting the bounded open interval
(a—r,a+r). However, in an arbitrary metric space there is no such thing as an interval.
But the object B[a;r] does have a counterpart in any metric space, which is the reason
we define it in terms of distance.

Theorem 5.2A thus reads “f is continuous at a if and only if given € >0 there exists
6 >0 such that f(x)E€ B[f(a);€] if xE€ B[a;8].” That is, the entire open ball B[a;d] is
mapped by f into the open B[ f(a);e].

Thus f is continuous at @ if and only if, for any open ball B about f(a), there is an
open ball about a which f maps entirely into B. It turns out to be more useful to state >
this definition in terms of inverse images.
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5.2C. THEOREM. The real-valued function f is continuous at € R' if and only if the
inverse image* under f of any open ball B[ f(a);€] about f(a) contains an open ball
Ba; 8] about a. (That is, given € >0 there exists § >0 such that

f' (B[ f(a);€])D B[ a;8].)
It is of the utmost importance that the reader fully understand 5.2C before going on.
Our final reformulation of the continuity concept will be in terms of sequences.
Observe first that the sequence {x,}_, converges to « if and only if given €>0 there

exists N €7 such that
x,€EB[aje] (n>N).

That is, given any open ball B about g, all but a finite number of the x, are in B.

5.2D. THEOREM. The real-valued function f is continuous at a€ R' if and only if,
whenever {x,}., is a sequence of real numbers converging to a, then the sequence

n=1
{f(x,)} =, converges to f(a). That is, f is continuous at « if and only if
nli)n;o Xx,=a implies Jim f(x,)=f(a). @)

PROOF: Let us first assume that f is continuous at a and prove that (*) holds. Let
{x,}%_; be any sequence of real numbers converging to a. [Then f(x,) will be defined
for n sufficiently large.] We must show that lim f(x,)=f(a)—that is, given e >0 we
must find N €I such that

n—o0

f(x,)EB[f(a);e]  (n>N). )
But since f is continuous at a there exists § >0 such that
f(x)E B[ f(a);¢€] (x€B[a;8]). (2)
Furthermore, since lim,_, _ x, = a, there exists N €/ such that
x,EB[a;8] (n=N). 3)

For this N, (1) follows from (2) and (3).

Conversely, suppose (*) holds. We must prove that f is continuous at a. Assume the
contrary. Then, by 5.2C for some €¢>0 the inverse image under f of B= B[ f(a);€]
contains no open ball about a. In particular, f ~!(B) does not contain B[a;1/n] for any
n€ 1. Thus for each n €I, there is a point x, € B[a; 1/n] such that f(x,)& B. That is,

1
% —al <o but |f(x)—f(@)|> e
This clearly contradicts (*), so f must be continuous at a.

52E. We use 5.2D to give an easy proof. of 5.1C.
Suppose, then, that the hypotheses of 5.1C hold. By 5.1D, all we need show is that

Jim g f(x,)]=g[ f(a)] (1)

where {x,}>_, is any sequence of real numbers such that

lim x,=a. (2)
Since f is continuous at a, (2) and 5.2D imply
lim f(x,)=/(a). 3)

But since g is continuous at f(a), (3) and 5.2D imply (1) and the proof is complete.

* See 1.3C.
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Exercises 5.2

1. Use 5.2D to prove 5.1B.
2. Use 5.2C to prove 5.1C.
3. Use 5.2D to prove that if f is continuous at e € R, then |f| is also continuous at a.

5.3 FUNCTIONS CONTINUOUS ON A METRIC SPACE

All the formulations of the continuity of a real-valued function at a point in R! were
based on the metric for R'. It is therefore easy to extend the concept of continuity to
functions from any metric space into another. We first define “open ball” for a metric
space.

5.3A. DEFINITION. Let {(M,p)> be a metric space. If a€M and r>0, then Bla;r] is
defined to be the set of all points in M whose distance to a is less than . That is

Bla;r]={xEM|p(x,a)<r}.

We call B{a,r] the open ball of radius r about a.

For example, the open ball of radius 1 about the origin in Euclidean 3-space is the set
of all points {x,y,z) such that x2+y?+ z2< 1. This example shows why we use the term
“ball.”

If M is the closed interval [0, 1] with the absolute value metric, then B[}; 1] is the
interval [0, 2). (Points in R' to the left of 0 are not in M.)

If M=R,, the real line with discrete metric, and if a is any point in R, then
Bla; 1]={a}. For the only point in R, whose distance to a is less than 1 is g itself. On
the other hand, B[a;2]=R,.

We now define continuity. Let (M, p,> and {M,,p,)> be metric spaces, let a € M, and
let f be any function whose range is contained in M, and whose domain contains some
open ball B[a;h] (h>0).

5.3B. DEFINITION. The function f is continuous at a € M, if lim,_ , f(x)=f(a) (where
limit is defined in 4.3A).

The proof of the following theorem consists merely of translating the proofs of 5.2A,
5.2C, and 5.2D into metric-space notation. Suppose f is as in the paragraph preceding
5.3B.

5.3C. THEOREM. The function f is continuous at a € M, if and only if any one (and
hence all) of the following conditions hold.

(a) Given € >0 there exists § >0 such that
P f(x).f(a)]<e  (pi(x,a)<8).

(b) The inverse image under f of any open ball B[ f(a); €] about f(a) contains an open
ball B[a;d] about a.

(c) Whenever {x,}>_, is a sequence of points in M, converging to a, then the
sequence { f(x,)}_, of points in M, converges to f(a).

If a is not a cluster point of the domain of f (see the paragraph preceding 4.3A), then
lim,_,, f(x) is not defined. However, the properties (a), (b), and (c) of 5.3C do make
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sense for such a point ¢ and are equivalent to one another. We may take any one of
these properties as the definition of the continuity of f at a. (It will follow that f must be
continuous at a. Verify.)

The analogue of 5.1C reads as follows.

5.3D. THEOREM. Let (M ,p;>, {M,,p,>, {M,;,p;) be metric spaces and let f: M,—M,,
g:M,—M,.* If fis continuous at a € M, and g is continuous at f(a) E M,, then gof is
continuous at a.

PROOF: By (c) of 5.3C all we need show is that
lim g[ f(x,)]=2[f(a)]
whenever {x,}-, is a sequence in M, such that

lim x,=a.
n—oo

The proof then proceeds exactly like the proof of 5.2E.

For real-valued functions on metric spaces there is a generalization of 5.1B. The
following theorem may be easily deduced from 4.3B (in the same way that 5.1B was
deduced from 4.1C and 4.1D).

5.3E. THEOREM. Let M be a metric space, and let f and g be real-valued functions
which are continuous at a€ M. Then f+g, f—g, and fg are also continuous at a.
Furthermore, if g(a)#0, then f/g is continuous at a.

We emphasize that, so far, only continuity at a point has been defined. The continuity
of a function f at a point a is a local property—that is, continuity of f at a depends only
on “what goes on near a.”

Now we will define what we mean by a function continuous on a whole metric space.

5.3F. DEFINITION. Let M, and M, be metric spaces and let f: M;—M,. We say that f is
a continuous function from M, into M, (or, more simply, f is continuous on M,) if f is
continuous at each point in M,.

N
5.3G. THEOREM. If f and g are real-valued continuous functions on a metric space M,
then so are f+g, f—g, and fg. Furthermore, if g(x)#0 (x€ M), then f/g is also
continuous on M.

PROOF: The proof follows directly from 5.3F and 5.3E.

Any polynomial function f [that is, f(x)=apx"+a;x" '+ -+ +a,] is thus a con-
tinuous function on R!. For constant functions are continuous on R! and so is the
function g(x)=x. The function f can be written as a sum of products of these kinds of
functions and is thus, by 5.3G, continuous.

The function A defined by A(x)=(1+ x*) /(1 + x?) can be written f/g where f and g
are polynomials. Since g(x) is never zero, it follows that 4 is continuous on R .

Here is a more curious illustration. Let f be any function from the metric space R, into
a metric space M. We have already observed that for any a € R, the open ball B[a; 1]
contains only the point a. Thus for any € >0, the inverse image under f of B[f(a);e]

* For simplicity of statement we are assuming that the domains of f and g are all of M, and M, respectively.
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certainly contains B[a;1]. By (b) of 5.3C, this shows that f is continuous at a. Since a
was an arbitrary point in R, we have

5.3H. curiosiTy. Every function from R, (into a metric space) is continuous on R,.

Exercises 5.3

1. Give an example of a function which is continuous on R' and whose range is

(@) (0,0) (b) [0,0)

(©) (0,1) (d) [0,1].

You may assume that e*, logx, sinx, and so on, are continuous where they look
continuous.

2. Let f be the function from R? onto R' defined by
fxyd)=x  ((xy>ER?).

Show that f is continuous on R2
3. If f: R>>R? is defined by

fxp))=<y.xy  (Kxy)ER?),

show that f is continuous on R2
4. If f:R'SR' g:R'>R', if f and g are both continuous on R, and if

h({xp0)={f(x).8(»)>  (Kx.y>ER?),

prove that A is continuous on R2.

5. Define f: (> * as follows. If s € {? is the sequence s,,s,,..., let f(s) be the sequence
0,5,,5,,... . Show that f is continuous on 2.

6. Let M be a metric space. Suppose f: M—R, and that f is 1-1. Show that if f is
continuous at a € M, then {a} is an open ball in M.

7. True or false: If fis a 1-1 continuous function from a metric space M, into a metric
space M,, and if B is an open ball in M,, then f(B) is an open ball in M,.

8. Let A be a nonempty set. Find a metric p for A for which there exist r,,r, € R with
0<r,<r, and such that

B[a;rl]=B[a;r2]

for every a€ 4.
9. Let M|, M, be metric spaces and suppose f: M,—M,. Prove that f is continuous if
and only if f sends convergent sequences in M, to convergent sequences in M,.

10. For any rational number r in (0, 1), write r=p /g where p and g are integers with no
common factor and ¢>0. Then define f(r)=1/4. Define f(x)=0 for all irrational
numbers x in (0,1). Thus f: (0, 1)-[0, 1].

(a) Prove that f is not continuous at any rational.

(b) Prove that f is continuous at each irrational. (Hint: Show that for any € >0 there
are only a finite number of rational numbers p/g in (0, 1) such that 1/g> €.)

(c) Show that f can be extended to a function g on R! such that g is continuous at
each irrational but is not continuous at any rational.

5.4 OPEN SETS

In order to formulate properties of continuous functions on a metric space M we need
to attach names to various kinds of subsets of M such as open, closed, bounded, totally
bounded, compact, and so on. We begin by defining open set.
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5.4A. DEFINITION. Let M be a metric space. We say that the subset G of M is an open
subset of M (or, more simply, that G is open) if for every x € G, there exists a number
r>0 such that the entire open ball B[x;r] is contained in G.

As an intuitive example consider the set 4 of all points in the plane R? inside an
ellipse. (Draw a picture.) If P €4, we can draw a circle with center P which lies entirely
inside the ellipse. The set B of points inside this circle is then an open ball (in R?) which
lies entirely in 4. This shows that 4 is open in R2.

Next, let us prove that for an arbitrary metric space (M, p), any open ball B = B[a;s]
is itself an open set. (This will justify the use of the word “open” in “open ball.”) If
x€ B, we must find r >0 such that B[x;r]C D . Let t=p(x,a) and let r be any positive
number less than s—¢. (Why is s—1¢ positive?) If y € B[x;r], then p(a,y)<p(a,x)+
p(x,y). But p(a,x)=1t, and p(x,y)<r since y € B[x;r]. Thus p(a,y)<t+r<t+s—t=s.
Hence y € B[a;s]= B, which proves B[x;r]C B, and we are done. See Figure 21.

Bla;s] =B

FIGURE 21.

As a third example, consider R,. If a€R,, then {a}= B[a;1] and hence {a} is an
open set in R,. That is, any set with only one point in it is open in R,.

On the other hand, if a € R, then {a} is not an open set in R'. For every open ball in
'R is a nonempty open interval and, certainly, {a} contains no such interval.

The last two paragraphs show that whether a set 4 is open or not depends on what
metric space is under consideration. As another illustration of this important point we
note that the “half-open” interval [0, 1) is not an open subset of R'. However [0, 1) is an
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open subset of the metric space [0,1]. Indeed [0, 1) is precisely the open ball B[0; ] in
the metric space [0, 1].

5.4B. THEOREM. In any metric space {M,p) both M and the empty set ¢§ are open sets.

PROOF: If x € M, then (by definition of B[x;r]) every open ball B[x;r] is contained
in M. Hence M is open. The empty set ¢j is open simply because there are no x in @& and
hence every x € g satisfies the condition of 5.4A.

We can put any number of open sets together and obtain a new open set. That is, the
union of finitely many, countably many, or even uncountably many open sets is again an
open set. Here is the proof.

5.4C. THEOREM. Let ¥ be any nonempty family of open subsets of a metric space M.
Then U ;4G is also an open subset of M.

PROOF: Let H=U;c4G. If x € H, we must show that there is an open ball B[x;r]
contained in H. But if x € H, then x € G for some G € %. Since G is open there is some
B(x;r] with B[x;r]C G. But G C H and so B[x;r]C H, which is what we wished to
show.

An interesting consequence of 5.4C is the following.

5.4D. THEOREM. Every subset of R, is open.

PROOF: In the third example following 5.4A we showed that all one-point subsets of
R, are open. But any subset G of R, is obviously a union of such sets. By 5.4C, then, G is
open.

It is not true, however, that the intersection of an infinite number of open sets in a
metric space is always open. In R', for example, if I, denotes the open interval
(=1/n,1/n), then N°_,I, contains only 0 and is therefore not open. However,
5.4E. THEOREM. If G, and G, are open subsets of the metric space M, then G,N G, is
also open.

PROOF: If x € G;N G,, we must find an open ball B[x;r] contained in G;N G,. Since
x € G, and G, is open, there is a ball B[x;r,] with B[x;r,]C G,. Similarly, there is a ball
B[x;r,] with B[x;r,]C G,. Thus if r=min(r,r,), then B[x;r] is contained in G, and G,
and thus B[x;r]C G,n G,. This completes the proof.

From 5.4E it follows easily by induction that the intersection of any finite number of*
open sets is open.

5.4F. It is useful to know precisely what the open sets in R! look like. From 5.4C we
know that if 1,,1,,... are open intervals, then UZ_,/, is an open set in R'. We now
prove the converse.

THEOREM. Every open subset G of R! can be written G=U I,, where I,,1,,... are a
finite number or a countable number of open intervals which are mutually disjoint. (That
is, I, NI, =@ if m+#n.)
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PROOF: If x € G, then there is an open interval (open ball) B containing x such that
B C G. Let I, denote the largest open interval containing x such that I, C G.* [/, may be
an unbounded interval, for example, (a,0).] Then G=U ,;I,. Now if xEG,yEQG,
then either I, =1, or I N[, =@. For if I, # 1, and I, N [,# @, then I, U I, would be an
open interval contained in G which is larger than 7. This contradicts the definition of I,.
Finally, each I, contains a rational number. Since disjoint intervals cannot contain the
same rational and since there are only countably many rationals, there cannot be
uncountably many mutually disjoint intervals /.. The theorem now follows.

We can use the notion of open set to give a necessary and sufficient condition that a
function on a metric space be continuous. The following theorem is fundamental.

5.4G. THEOREM. Let (M ,p,> and {(M,,p,) be metric spaces and let f: M,—M,. Then f
is continuous on M, if and only if f~!(G) is open in M, whenever G is open in M,.
(Briefly, f is continuous if and only if the inverse image of every open set is open.)

PROOF: Suppose first that f is continuous on M,. We wish to show that if G is open in
M,, then f~!(G) is open in M,. Thus if x €f ~!(G), we must find an open ball B[x;r]
contained in f~!'(G). Now since x €f ~!(G) then y = f(x) € G. Hence there is an open
ball B[y;s] contained in G (since G is open in M,). By (b) of 5.3C, f~'(B[y;s]) contains
some B[x;r]. Hence f~'(G)>f~'(B[y;s])D B|[x;r] which is what we wished to show.

Now _suppose f~!(G) is open in M, whenever G is open in M,. To show that f is
continuous on M, it is sufficient to show that f is continuous at an arbitrary point
a€EM,. Let B = B[f(a);€] be any ball about f(a). Then % is open in M, and so, by
assumption, f~'(® ) is open in M,. Since a€f (%) and f~!(% ) is open, there is an
open ball B[a;8] contained in f~!(% ). But then, by (b) of 5.3C, f is continuous at a.
This completes the proof.

Exercises 5.4

1. This concerns the proof of 5.4F. Show that if G is an open subset of R'and if x€G,
then there is such a thing as the largest open interval I, containing x such that
I.CG.

2. Use your intuition to decide which of the following subsets of R? are open.

(@) {((xpdlx+y=1).

(®) {(xlx+y>1).

(c) {{x,y)|x and y rational}.

(d) R2—{<0,0))}. (That is, R* with the origin removed.)

3. Let x;,x, be distinct points in a metric space M. Find disjoint open sets G, and G,
such that x, € G, and x, € G,.

4, Let E be the set of positive real numbers. Find f~!(E) for each of the following
functions f.

(@) f(x)=sinx (—oo0<x<o0).
(b) f(x)=x* (—oc0<x<00),
() f(x)=0 (x<0),

=1 (x>0).

5. Prove that if f is any continuous real-valued function on R', then f~!(E) is open in
R' (where E is as in the preceding exercise).

6. Let f and g be continuous real-valued functions on the metric space M. Let 4 be the
set of all x € M such that f(x) < g(x). Prove that 4 is open.

* See Exercise 1.
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7. Let A4 be the set of all sequences {s,}_, in {* such that %_,s2< 1. Prove that 4 is
an open subset of (2.

8. Let G be an open subset of R'. Prove that x; (the characteristic function of G) is
continuous at each point of G.

9. Give an example of subsets 4 and B of R? such that all three of the following
conditions hold.
(a) Neither 4 nor B is open;
(b) AN B=g;
(c) AU B is open.

10. Do the preceding exercise with R? replaced by R'.

11. If 4 and B are open subsets of R, prove that 4 X B is an open subset of R2,

5.5 CLOSED SETS

5.5A. DEFINITION. Let E be a subset of the metric space M. A point xE M is called a
limit point* of E if there is a sequence {x,},_, of points of E which converges to x. The
set £ of all limit points of E is called the closure of E.

It follows immediately that any point x of E is a limit point of E. For the sequence
x,x,x,... of points of E converges to x. Thus if x € E, then x € E. In other words,

5.5B. COROLLARY. If E is any subset of the metric space M, then E C E.

It very often happens, however, that E# E (that is, that E does not contain all its limit
points). For example, let E denote the open interval (0, 1) considered as a subset of R
Then 0 is a limit point of E, since the sequence {1/n}_, of points of E converges to 0.
But 0, although a limit point of E, does not lie in E.

On the other hand, the closed interval [0, 1] does contain all its limit points (verify).

For a third example, consider Figure 22. If E is the set of points {x,y)» in R? such that
x*+y%<1, then E is the set of (x,y) such that x>+ y2< 1. This is because every point
P,={x,,y,) such that x?+yZ=1is a limit point of E, while any point P,={x,,y,> such
that x2+y2> 1 is, clearly, not a limit point of E.

We now define a closed subset of M as a subset that contains all its limit points.

5.5C. DEFINITION. Let E be a subset of the metric space M. We say that E is a closed
subset of M if E=E.

In view of 5.5B, to show that a subset £ of M is closed it is enough to show that
ECE.

Before proceeding to examples we give another formulation of the concept of limit
point.

5.5D. THEOREM. Let E be a subset of the metric space M. Then the point xEM is a
limit point of E if and only if every open ball B[x;r] about x contains at least one point
of E.

PROOF: Suppose x is a limit point of E. Then there is a sequence {x,};>—, of points of
E that converges to x. If B[x;r] is any open ball about x, then B[x;r] contains x, for
any n such that p(x,,x)<r. Hence B[x;r] contains a point of E.

*Some authors use the term /imit point to mean what we call cluster point.
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FIGURE 22. The point P, is a limit point of E, but P, is not.

Conversely, let x € M and suppose every B[x;r] contains a point of E. Then for n€1,
the open ball B[x;1/n] contains a point x,EE. The sequence {x,}i., obviously
converges to x [since p(x,x,)<1/n], and hence x is a limit point of E. The proof is
complete.

Theorem 5.5D says roughly that x € M is a limit point of E C M if and only if there
are points of E arbitrarily close to x.

If E C R? (the plane), then x is a limit point of E if and only if inside every c1rcle
about x there is a point of E. It is intuitively clear, then, that if L is a straight line in R?
then no point outside of L can be a limit point of L. Hence L is a closed subset of R2.
Similarly, a plane in R? is a closed subset of R>.

For any metric space M, if x€ M, then {x} is a closed subset of M. For the only
sequence of points in {x} is x,x,x,..., and hence x itself is the only limit point of {x}.
Thus {x} contains all its limit points and is therefore closed. Thus if a € R,, then the set
{a} is both open and closed in R,.

This shows, as the saying goes, that “sets are not like doors.” A set may be
simultaneously open and closed!

In the other direction, a set may be neither open nor closed! For example, the
half-open interval [0, 1) is neither a closed subset nor an open subset of R .

If we take the closure of any subset E of a metric space M we obtain a closed set.

5.5E. THEOREM. If E is any subset of a metric space M, then E is closed. That is, E=E.

PROOF: Since E C E (5.5B) we need only prove E D E. Take any x € E. To show that
x€E it is enough (by 5.5D) to show that any open ball B[x;r] contains a point of E.
Since x €E, the ball B[x;r] contains a point y € E (again by 5.5D). Let s=p(x,y) and
choose any positive number ¢ with t<r—s. Since y €E the ball B[y;] contains, by
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5.5D, a point z € E. But p(x,y)=s,p(y,z)<t<r—s, and so
p(x,2)<p(x,y)+p(y,z)<s+r—s=r.

Hence z € B[ x;r]. Thus B[x;r] contains a point of E, which is what we wished to show.
Corresponding to 5.4E we also have the following result

5.5F. THEOREM. In any metric space (M, p) the sets M and @ are both closed.

PROOF: It should be obvious that M contains all its limit points and that ¢ has no
limit points (and hence contains all its limit points).

In theorems 5.4C and 54E we must interchange union and intersection to obtain
correct results for closed sets. Corresponding to 5.4E we have the following theorem.

5.5G. THEOREM. If F, and F, are closed subsets of the metric space M, then F,U F, is
also closed.

PROOF: Let x&€F,UF, Then there is a sequence {x,}., of points of FUF,
converging to x. But {x,}%_, must have a subsequence consisting wholly of points in F,
or a subsequence consisting of points in F,. Since any subsequence of {x,};., must
converge to x, this shows that either x € F, = F, or x € F,= F,. Thus x € F,U F,. Hence
F,u F,DF,UF,, and the proof is complete

The union of an infinite number of closed sets need not be closed. For example,
U®.,[1/n,1—1/n]=(0,1), which is not closed in R'. Indeed, any set can be written as
the union of closed sets since one-point sets are always closed.

On the other hand, the intersection of any number of closed sets is closed. (Compare
5.4C.)

5.5H. THEOREM. If F is any family of closed subsets of a metric space M, then Nz gF
is also closed.

PROOF: Let xENgcq F. Then any ball B[x;r] contains a point y € NregF. Thus
for any F € ¥, the ball B[x;r] contains a point of F—namely, y. Hence x € F= F. Thus
x lies in every FEY and so xENgeqg F. This proves Npeg F D NpegF and thus
N reg F is closed.

Now we come to the extremely important relationship between open sets and closed
sets—namely, that a set is open if and only if its complement is closed.

5.51. THEOREM. Let G be an open subset of the metric space M. Then G'=M—G is
closed. Conversely, if F is a closed subset of M, then F'= M — F is open.

PROOF: Suppose first that G is open. If x € G, then there is a ball B= B[x;r] which
lies entirely in G. Hence B contains no point of G’. By 5.5D (with £= G") the point x
cannot be a limit point of G’. Thus no point in G is a limit point of G’, so G’ contains all
its limit points and is thus closed.

Now suppose F is closed. If y € F’, there must be a ball B[y;r] which contains no
point of F. For otherwise y would be a limit point of F. We would then have y € F (since
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F is closed), which contradicts y € F’. Thus for every y € F’ there is a ball B[y;r] lying
entirely in F’. Hence F’ is open.

Theorem 5.51 enables us to prove theorems on closed sets from theorems on open sets.
For example, let us deduce 5.5G from 5.4E.

Suppose F; and F, are closed. Then, by 5.5I, F| and F, are open. But then, by 5.4E,
F{N F; is open. Now we use 1.2H to show that F{N F,=(F,U F,)’ so that (F,U F,) is
open. By 5.51 once more, F,U F, [the complement of (F,U F,)] is closed. This proves
5.5G.

Similarly, 5.5H may be deduced from 5.4C. (However, to do this we must first show
that if & is any family of sets, then UpcgF ' =(NgpegF), even if ¥ consists of
infinitely many sets. The proof of this is essentially the same as that of 1.2H. We leave all
this to the reader.)

We can now formulate continuity in terms of closed sets (compare 5.4G).

5.5). THEOREM. Let (M,,p,> and {(M,,p,> be metric spaces, and let f: M,—M,. Then f
is continuous on M, if and only if f~'(F) is a closed subset of M, whenever F is a closed
subset of M,.

PROOF: Suppose first that f is continuous on M. If F C M, is a closed set, then, by
5.51, F’ is open. By 5.4G, f~!(F’) is open in M. But since F U F’ = M, we have, by 1.3E,
STUF)YUSf Y(F)=f"Y(M,). That is, f~"(F)Uf~'(F)=M,. Hence f~!(F) is the com-
plement (relative to M,) of f~'(F’). Since f ~!(F"’) is open, then f ~!(F) is closed, which is
what we wished to show. The converse part of the proof is left to the reader.

If the reader understands the equivalence of the various formulations of continuity, he
should have no difficulty in proving the following theorem.

5.5K. THEOREM. Let f be a 1-1 function from a metric space M, onto a metric space
M,. (That is, fis a 1-1 correspondence between M, and M,.) Then if f has any one of the
following properties, it has them all.

(a) Both fand f~! are continuous (on M, and M,, respectively).
(b) The set G C M, is open if and only if its image f(G)C M, is open.
(c) The set F C M, is closed if and only if its image f(F) is closed.

5.5L. perINITION. If f has any one (and hence all) of the properties in 5.5K, we call f a
homeomorphism from M, onto M,. If a homeomorphism from M, onto M, exists, we
say that M, and M, are homeomorphic.

The metric spaces [0, 1] and [0, 2] (with absolute value metric) are thus homeomorphic.
For if f(x)=2x, then'f is a homeomorphism of [0, 1] onto [0, 2].

If f(x)=logx, then f is a homeomorphism of (0, ) onto R' (verify).

See if you can prove that (0,1) and [0, 1] are not homeomorphic.

The final concept in this section is that of “dense subset.”

5.5M. DEFINITION. Let M be a metric space. The subset 4 of M is said to be dense in
M if A=M. (That is, A is dense in M if every point in M is a limit point of 4.)
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For example, the set 4 of rationals in dense in R'. For, by 3.11D, every irrational is
the limit of a sequence of rationals.

On the other hand, R, has no dense subset (except R, itself). For if 4 C R,, then A =4
(by 5.4D and 5.51). Hence, if A5 R, then A% R,, and so 4 is not dense in R,.

Exercises 5.5

1. Use your intuition to decide which of the sets of exercise 2, Section 5.4, are closed in
R2.

2. For each of five distinct metric spaces give an example of a subset which is neither

open nor closed.

. Prove that any finite subset of a metric space M is closed.

. Let A and B be subsets of a metric space M. If A C B, prove that 4 C B.

5. (a) True or false? If 4 and B are subsets of R! and if A C B, then 4 C B.
(b) The same question with R ' replaced by R,.

6. If ae R, prove that [a, ) is a closed subset of R'.

7. Let F, G be subsets of a metric space M such that F is closed and G is open in M.
Show that F— G is closed and G — F is open in M.

8. If 0<r<s and a is a point in the metric space M, show that the set

{(xEM|r<d(x,a)<s)

H W

is open in M.
9. Let A, B be subsets of the metric space M. Prove that

AUB=AUB.
Also, prove that

ANB CAnB,

and give an example to show that equality need not occur.

10. Let f be a continuous real-valued function on the metric space M. Let A be the set of
all x € M such that f(x)> 0. Prove that 4 is closed.

11. Let f be a continuous real-valued function on the metric space M. Let B be the set of
all x € M such that f(x)=0. Prove that B is closed.

12. If 4 and B are closed subsets of R, prove that 4 X B is a closed subset of R2.

13. Give an example of a sequence 4,,4,,... of nonempty closed subsets of R! such that
both of the following conditions hold:
(@) A\ DA, DA3D -
(b) N :°= lAn = @

14. Let

f(x)= 1‘:6|x| (—o<x<®).

Prove that f is a homeomorphism of R! onto (—1,1).

15. Show that R' and R, are not homeomorphic.

16. Let M,,M,, M, be metric spaces. If M, and M, are homeomorphic, and if M, and
M, are homeomorphic, prove that M, and M, are homeomorphic.

17. Prove that (0, c0) (with absolute-value metric) is homeomorphic to (0, 1).

18. Give an example of a countable subset of R? which is dense in R2.

19. Give an example of a countable subset of (> which is dense in 2. (This is a difficult
one.)



5.6 DISCONTINUOUS FUNCTIONS ON R! 143

20. Let M be a metric space and let A C B C M. If 4 is dense in B and if B is dense in
M, prove that A is dense in M.
21. Give an example of a set E such that both E and its complement are dense in R'.
Can E be closed?

5.6 DISCONTINUOUS FUNCTIONS ON R'!

As an interesting digression from our discussion of metric spaces, we are going to
investigate the set of points at which a given real-valued function on R! is discontinuous
(discontinuous =not continuous).

After the proof of 5.5G we noted that a countable union of closed subsets of R' need
not be closed.

5.6A. DEFINITION. The subset D of R'! is said to be of type F, if D= U F, where
each F, is a closed subset of R'.

Thus if F is closed, then F is of type F, since we can write F= U, F, where F;=F
and F,=F,=---=@.

Any open interval (a,b) is also of type F, since (a,b) is the union of the (countably
many) closed intervals [a+1/n,b—1/n] for n€l with 2/n<b—a.

What we now wish to show is that if f: R'—> R, and D is the set of points of R' at
which fis not continuous, then D is of type F,. This, however, requires a little machinery.

5.6B. DEFINITION. Let f: R' >R If J is any bounded open interval in R, we define
[ f;J] (called the oscillation of f over J) as*

o[ f;J]=Lub. f(x)— glb. f(x).
x€J xeJ
Then if a € R, we define [ f;a] (called the oscillation of fata) to be
o[ f;al=glb.w[ f;J ]
where the g.l.b. is taken over all bounded open intervals J containing a.
Clearly «[f;J]>0 for any interval J, and hence «[f;a]>0 for any point a. The
number [ f;J] measures, roughly, the distance from the “lowest part” to the “highest
part” of the graph of f on J. It is intuitively clear that if f is continuous at a, and J is a

“small” interval containing a, then «[f;J] must be “small.”
We leave the proof of the next theorem to the reader.

5.6C. THEOREM. If f: R'>R' and a€ R, then the following statements hold:

(1) If fis continuous at a, then «[ f;a]=0,
(2) If f is not continuous at a, then «[ f;a]>0.

Now we start using closed sets.

5.6D. THEOREM. Let f: R'>R'. For any r>0 let E, be the set of all a€ R' such that
w[f;a]l>1/r. Then E, is closed.

* For simplicity, we assume throughout this section that f is bounded. That is, we assume that the range of f
is a bounded subset of R!. This is to avoid infinite values for w[f;J]. All the results of this section hold also
for unbounded f.
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PROOF: Let x be any limit point of E,. We must show that x € E,. That is, we must
show that w[f;x]>1/r. To do this, it is sufficient to show that if J is a bounded open
interval containing x, then o[ f;J]> 1/r (since o[ f; x] is the g.1.b. of such «[ f;J]). But by
5.5D the open interval (open ball) J must contain a point y of E, (since J contains the
limit point x of E,). But then «[f;J]> [ f;y]>1/r and the proof is complete.

The result we have been looking for now follows.

5.6E. THEOREM. Let f: R'>R! and let D be the set of points in R' at which f is not
continuous. Then D is of type F,.

PROOF: If x€& D, then, by 5.6C, w[f;x]>0. For some n€ I, then, we must have
«[f;x]>1/n. This proves that D C U, E,,, where E, ,, is as in 5.6D. Conversely, if
x€U,L Ey,,, then o[ f;x]>0 and so x € D. Thus D=U;° E, ,. But by 5.6D each E, ,,
is closed. Thus D is a countable union of closed sets, which is what we wished to show.

In exercise 10 of Section 5.1 we gave an example of a function which was continuous
at each irrational but discontinuous at each rational.

We are going to show that there is no function which is continuous at each rational
but discontinuous at each irrational. To do this it is enough, by 5.6E, to show that the set
of all irrationals is not of type F,. This involves introducing the notion of category, which
has great importance in higher analysis.

5.6F. DEFINITION. The subset A of R'is said to be nowhere dense (in R') if A contains
no (nonempty) open interval.

Thus the closed set F is nowhere dense if F itself contains no open interval. For
example, the set I of positive integers is nowhere dense. The Cantor set K is another
example of a closed set that is nowhere dense. (For K is closed since its complement is
the union of open intervals. Furthermore, K is nowhere dense since, according to 1.6D, a
chunk of every open interval will be removed in the geometric construction of K.)

5.6G. DEFINITION. The subset D of R! is said to be of the first category if D=U®_|E,
where each E, is nowhere dense in R'. If D is not of the first category, we say that D is
of the second category.

It follows immediately that any countable set D is of the first category since D is the
countable union of one-point sets, and any one-point set is (closed and) nowhere dense.
In particular, the set of rationals is of the first category. Furthermore

5.6H. THEOREM. If A and B are sets of the first category, then A U B is also of the first
category.

PROOF: If A=U_ H, and B=U;> E, where each E, and each H, is nowhere
dense, then 4 U B is the union of all the E,’s and H,’s (of which there are a countable
number). Hence A U B is the first category.

On the other hand, the whole space R' is not of the first category. This important
result is known as the Baire category theorem (for R').

5.61. THEOREM. The set R! is of the second category.
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PROOF: Suppose the contrary. Then R'=U®_|F, where each F, is nowhere dense.
We may assume that the F, are closed. Otherwise we could consider F, in place of F,
since R'=U®_F, and the F, are closed and nowhere dense. Take any x, not in F,.
Since F is closed there is an open interval I, about x; which does not intersect F,. Let J,
be a closed interval with 0 <length J, <1 such that J,C/,. Then J,n F,=g. Now F, is
nowhere dense and thus does not contain all of the interior* of J,. Take any x, in the
interior of J, such that x, & F,. Then there is an open interval I, about x, which does not
intersect F, such that I, CJ,. Let J, be a closed interval with 0 <length J, <% such that
J,CI,. Then J,N F,=@. Continuing in this fashion we may construct a sequence of
nonempty closed intervals J,DJ,DJ;D -+« such that 0< length J,<1/n and J,NF,
=@. By theorem 2.10E, there is a point y € R' contained in N %_,J,. But for each n,y is
in J, and hence y is not in F,. Hence y 2 U > | F,. This is a contradiction since U ;. F), is
by assumption equal to R'. The contradiction proves that R' must be of the second
category.

5.6]J. coroLLARY. The set of all irrationals is of the second category.

PROOF: The set of rationals is of the first category, as we have already observed. If
the set of all irrationals were of the first category, then, by 5.6H, R! would be of the first
category, contradicting 5.61. Thus the irrationals must be of the second category.

5.6K. cOrROLLARY. The set of all irrationals is not of type F,.

PROOF: Let A denote the set of all irrationals. If 4 is of type F,, then A=U;_ F,
where each F, is closed. But each F, contains only irrationals. Hence F, contains no
nonempty open interval. Thus each F, is closed and nowhere dense. This implies A4 is of
the first category, contradicting 5.6J.

We thus obtain the result we have been seeking.

5.6L. THEOREM. There is no real-valued function f on R' which is continuous at each
rational but discontinuous at each irrational.

PROOF: The proof follows directly from 5.6E and 5.6K.

Exercises 5.6

1. If E is nowhere dense in R, prove that any subset of E is nowhere dense in R'.

2. If E\,E,,... are a countable number of subsets of R', and if each E, is of the first
category, prove that U2 | E, is of the first category.

3. Prove that any nonempty open interval in R' is of the second category.

4. Let G be an open subset of R!. Prove that G is dense in R'! if and only if G’ (the
complement of G) is nowhere dense.

5. Let G,,G,,... be a sequence of open subsets of R ' each of which is dense in R'. Prove
that N2, G, is dense in R'. (Hint: Use the preceding two exercises.)

6. Let x be the function on R' defined by

x(x)=0if x is rational,

x(x)=1if x is irrational.

* By the interior of a closed interval [a,b] we mean (a,b).
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(That is, x is the characteristic function of the set of irrationals.) Fill in the details in
the proof of the following theorem.

THEOREM. There is no sequence { f,}_, of functions continuous on R' such that

lim f,(x)=x(x) (—co<x<o0). ™

PROOF: Suppose the contrary—that is, suppose (*) holds for some sequence { f,}5-,
of continuous functions.

(a) For each n€1 let E,={x|f,(x)>4}. Then E, is closed (why?).

(b) For each N€I let Fy=EyNEy, NEy,-- =N yE, Then F, is closed
(why?).

(c) If x is irrational, then lim,_, f,(x)=x(x)=1 and so there exists N € such that
x € Fy (why?).

(d) If x € F,, for some N, then x is irrational (why?).

(e) Thus UR_,Fy is precisely the set of irrationals. But this implies that the set of
irrationals is of type F, (why?). This contradicts 5.6K, and the contradiction
proves the theorem.

5.7 THE DISTANCE FROM A POINT TO A SET

It is fruitful to extend the notion of distance between points to the notion of distance
from a point to a set.

5.7A. DEFINITION. Let (M,p) be a metric space. Let A be a nonempty subset of M and
let x be a point of M. We define p(x,A4), the distance from x to 4, as

p(x,4)=glb.{p(x,y)|yEA}.
For example, if M=R"', A=(0,1), and x=2, then
p(x,4)= glb. 2—y|=1.
o<y<l1

Note that although p(x,A4)=1, there is no y €A such that p(x,y)=1.
Thus if there is a closest point z in 4 to x (or more than one closest point), then
p(x,4)=p(x,z). However, as in the example, there may be no closest point.

Here is a connection with closed sets.

5.7B. THEOREM. Let 4 be a nonempty subset of the metric space M and let x be a point
of M. Then

p(x,4)=0
if and only if xEA.

PROOF: First suppose p(x,4)=0. Then 0 is the greatest lower bound of the set
{p(x,y)|y €EA}. Thus if € >0, then € is not a lower bound for the set so there exists y € 4
with p(x,y) < e. This shows that every B[x;e¢] contains a point of 4. By theorem 5.5E, x
is a limit point of 4, and so x EA.
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Conversely, suppose x €A4. Then there exists a sequence {x,}<_, in 4 such that
lim x,=x. But

n—oo

p(x,A4) < p(x,x,) (n€l).

Letting n—o0 we obtain p(x,4) <0, so that p(x,4)=0. This completes the proof.
If A is closed, we have the following corollary.

5.7C. cOROLLARY. Let 4 be a nonempty closed subset of the metric space M and let x
be a point of M. Then x €4 if and only if p(x,4)=0. Hence x €4’ (the complement of
A) if and only if p(x,4)>0.

Viewed as a function, the distance p(x,A4) has interesting properties and applications.
(See the exercises.)

5.7D. THEOREM. Let A be a nonempty subset of the metric space M. Define
f()=p(x.4)  (xEM).
Then f is continuous on M.

PROOF: Let x be a point of M. Given €>0 let x, be any point of M such that
p(x,x,) < 86=¢/2. Since

f(x)=p(x,4)= glb.p(x,y),
YEA
there exists y; €4 such that f(x)+¢/2> p(x,y,). Then
p(x1y1) < p(x1, %) +p(x,y1) <8+ f(x)+ % =f(x)+e
Hence
S(x))=p(x,,4)= g-l-g-P(xb)’) <p(xpy) <f(x)+e
ye

so that f(x;) — f(x) <e. But, reversing the roles of x and x, will show f(x)—f(x,)<e. We
have thus shown that

|f(x)=f(xp)|<e (p(x,x;) < &)

which proves that f is continuous at x. Since x was an arbitrary point of M, the proof is
complete.

Exercises 5.7

1. Let A be a nonempty subset of a metric space. If € >0, show that the set of x&M
_such that p(x,4) > € is closed.
2. Show that every open subset of a metric space is the union of countably many closed
sets.
3. Let F,F, be disjoini closed subsets of a metric space M. Prove that there exists
disjoint open sets G|, G, such that G,D F,,G,D F,.
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6.1 MORE ABOUT OPEN SETS

6.1A. As we noted in the previous chapter, if we denote the metric space [0, 1] (with
absolute value metric) by A4, then the interval [0, 1) is an open subset of 4 even though
[0,1) is not open subset of R'. Thus whether a given set is open or not depends on the
metric space of which it is considered a subset.

Indeed, if {M,p) is any metric space and A C M, then, by 5.4B, 4 is always an open
set in the metric space {(A4,p) even though 4 may not be open in {(M,p).

Before we take up new concepts in this chapter, we wish to investigate this
phenomenon more closely.

Let {(M,p) be any metric space and let 4 be any nonempty subset of M. Then {4,p>
is also a metric space. Now if a €4 we must distinguish between open balls in 4 about a
and open balls in M about a. For example, if {(M,p>=R"' and {4,p)=[0,1], then the
open ball B[0; ] in R' is the interval (— %, + 1), while the open ball B[0; ] in 4 =[0,1]
is the interval [0, 1). (That is, in 4 =[0, 1] the set of all points of 4 whose distance to 0 is
less than 1 is the interval [0, 1).) Consequently, let us introduce the following notations:
If ae A, let

B,[a;r]={x€E€Alp(a,x)<r},
By [a;r]={xE M|p(a,x)<r}.
Then it is clear that
B,[a;r]=AN By [a;r] *)

We can now throw some light on the question of what is open in what.

6.1B. THEOREM. Let {(M,p) be a metric space and let 4 be a proper subset of M. Then
the subset G, of A is an open subset of {4,p) if and only if there exists an open subset
G, of {M,p) such that G, =A4 N G,,. That is, a set is open in {4,p) if and only if it is
the intersection with 4 of a set that is open in (M, p).

148
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PROOF: Suppose first that G, is open in A. Then for each a € G, there exists r,>0
such that B,[a;r,]C G,. Define G,, as

Gy= U Byla;r,]
a€Gy
Then G,, is open in M since G is the union of open balls of M (5.4C). Also, from (*) of
6.1A it follows that G,, N4 =G,.

Conversely, suppose G,, is open in M and let G, = A4 N G,,. We wish to prove that G,
isopenin 4. If a€ G, then a € Gy,. Since G,, is open in M there is an open ball B,,[a;r]
contained in G,,. But then B, [a;r]n 4 C G, N A, which says that B,[a;r]C G,. For
each a € G,, then, we have shown that there is an open ball B,[a;r] contained in G,.
This proves that G is open in 4.

For example, if M=R"' and 4=[0,1], the set G,=[0,1) is open in 4. But G,=4nN
(—00,%), and (— o0, 1) is open in M. Thus, the G,, of 6.1B can be taken to be (— 0, 1).

The importance of 6.1B is that it enables us to give more than one formulation of
connectedness.

Exercises 6.1

1. Give an example of a metric space M and a nonempty proper subset 4 C M with the
property that every open subset of 4 is also an open subset of M.

2. Let A =[0,1]. Which of the following subsets of A are open subsets of 4?
(a) (%’ l]s
®) G 1),
© [4,1).
Which of (a), (b), and (c) are open subsets of R'? Which are open subsets of R??
(Regard R! as a subset of R2)

3. Is there any subset of R! that is an open subset of R??

4. Let A be an open subset of the metric space M. Prove that if B C A, then B is open in
A if and only if B is open in M.

6.2 CONNECTED SETS

Our intuition tells us that, whatever the definition of “connected set” turns out to be,
the interval [0, 1] should be called a connected subset of R! while the union [0, 1]U[2,3]
should not.

The usual way to define connectedness, however, does not immediately appeal to the
intuition. It is usually not trivial to prove that a given set is connected even though it
looks “connected.”

We will list two equivalent properties and then define a set to be connected if it has
either-(and hence both) of these‘properties. We recall first that in a metric space (M,p)
the sets M and @ are both open and closed. If these are the only subsets of M that are
. open and closed, we will (ultimately) call M connected.

6.2A. THEOREM. Let (M,p) be a metric space and let A be a subset of M. Then if A4
has either one of the following properties, it has the other.

(a) It is impossible to find nonempty subsets 4,,4, of M such that 4 =A,UAuA,N
A,=@,A,N A,=3. (Here A, means the closure of 4; in {M,p).)



150 CONNECTEDNESS, COMPLETENESS, AND COMPACTNESS

(b) When (4, p) is itself regarded as a metric space, then there is no set except 4 and
@ which is both open and closed in {(4,p).

PROOF: We will prove that (a) implies (b). Suppose, then, that (a) holds. If (b) were
false, then there would be a nonempty proper subset 4, of 4 such that 4, is both open
and closed in 4. But then, by 5.5I, 4,=4 — 4, would also be both open and closed in A.

We now show that 4,nA4,=¢. Suppose x E M is a point in 4,. Then x is the limit of
a sequence of points in 4,. If x were in 4, then x would be in 4. Since x is the limit of a
sequence of points in A,, this implies x EA4,, since A, is closed in A. But then
A,N A,# @ contradicting A,= 4 — A,. Hence if x E4,, then x EA,, so that 4,N4,=@.
Similarly 4,n 4,=g. Clearly A=A,U A,. But this contradicts (a), and so (b) must be
true if (a) is.

Now we will prove that (b) implies (a). Suppose that (b) is true. If (a) were false, then
there would exist nonempty subsets 4,4, of M such that A=4,U A4, and 4,N4,=
=A,NA,. Let G=M— A,. Then G is an open subset of M (by 5.5I). Since A4, is disjoint
from 4, we have 4, C G. This proves that GN A4 =A4,. But then, by 6.1B, 4, is an open
subset of A. Similar reasoning will show that 4, is an open subset of 4. Hence
A;=A— A, is a closed subset of 4. We have thus produced a nonempty proper subset of
A (namely A,) that is both open and closed in 4. This contradicts (b). Thus (a) must be
true if (b) is.

6.2B. DEFINITION. Let {M,p) be a metric space and let 4 be a subset of M. If A4 has
either (and hence both) of the properties (a) and (b) of th€orem 6.2A, we say that A4 is
connected.

It should be clear from (b) of 6.2A that whether or not 4 is connected is determined
purely by 4 and p and has nothing to do with M. That is, 4 will be connected when
regarded as a subset of (M, p) if and only if 4 is connected when regarded as a subset of
{A,p>. (In this respect, then, “connected” is very different from “open.”) However, in
some proofs it is useful to consider 4 as a subset in a larger space.

We can now show that 4 =[0,1]U[2,3] is not a connected subset of R'. For [0,1] is
both open and closed in 4. More generally,

6.2C. THEOREM. The subset A of R! is connected if and only if whenever a€A4,bE A
with a < b, then ¢ € 4 for any ¢ such that a < ¢ < b. (That is, whenever a€EA,bEA,a< b,
then (a,b)C A4))

PROOF: First suppose A CR' and that there exist aEA,bEA with a<b and a
number ¢ € R'— 4 with a<c<b. We will show that 4 is not connected. Indeed, if we
let A;=AN(— o0, c),A2 AN(c,00), then A =4 UA2 If x € A4,, then x is the limit of a
sequence of numbers in (—o,c). By 2.7D, then x < ¢. Hence x & A4,. This proves that
A, 1N A,=@. Similarly 4 mA2 @, and hence A4 is not connected.

Now suppose A is not connected. Then there exist nonempty sets A4,,4, such that
A=A,UA,A,NA,=F=A,NnA,. Choose any points a, EA,,a,E A,. Then a,#a, and
we may assume a, < a,. We will show that 4 #(a,,a,). Now let B be the set of all xE A,
such that a; < x < a,. That is, B=A4,N[a,,a,]. Then B is a bounded nonempty set of real
numbers and thus, by 1.7D, has a least upper bound @. Now a € B (why?) and hence,
since B CA,, we have a€A,. Hence a&Z A, since A,NA,=@. But a€[a,a,] and so
a<a,.

Now either €4 or agA. If ag A, then a##a, and so @>a,. Thus q;<a<a, and
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agZ A so that A #(a,,a,). On the other hand, if a€ 4, then a€ A4, (since @& A,). Hence
aZ A, and so @ is not a limit point of 4,. Hence there is a number ¢ with @< ¢ <a, such
that cZA4,. But c&Z A4, by definition of a. Hence cZA. Since a;<c<a, this proves
AZ(a,,a,). In either case, then, 4 Z(a;,a,) which is what we wished to show.

Consider next the subset B of R? consisting of the graph of y=sin(1/x) (0<x<1)
together with the closed interval on the y axis from <0, —1) to {0,1). Surprisingly
enough, it may be shown that B is a connected set in R2. We will not give details. This
example shows that untrained intuition may not always be helpful in connectedness
problems.

From the following theorem we can deduce a result useful in‘calculus.

6.2D. THEOREM. Let f be a continuous function from a metric space M, intc a metric
space M,. If M, (the domain of f) is connected, then the range of f is also connected.

PROOF: Let A=f(M,) so that f: M,=A. If A were not connected, then there would
exist a nonempty proper subset B of 4 such that B is both open and closed in 4. But
then, by 5.4G and 5.5J, f~'(B) would be a nonempty proper subset of M, that is both
open and closed in M,. This would contradict the hypothesis that M, is connected.
Hence A4 is connected and the proof is complete.

The special case of 6.2D in which M, is a closed bounded intetval [a,b] and M,=R'
yields the corollary we have been looking for.

6.2E. coroLLARY. If f is a continuous real-valued function on the closed bounded
interval [a, b], then f takes on every value between f(a) and f(b).

PROOF: By 6.2C the interval [a,b] is connected. By 6.2D the range of f is thus
connected. The corollary then follows from 6.2C.

Here is another application of connectedness. We will show that [0,1) and (0,1) are
not homeomorphic. Assume the contrary. Then there exists a 1-1 function f from [0, 1)
onto (0, 1) such that both f and f~! are continuous. Let a= f(0). Then the restriction of f
to (0,1) is a continuous function from (0, 1) onto (0,a)U(a, 1). But this contradicts 6.2D
since (0, 1) is connected while (0,a)U (a, 1) is not. See Figure 23.

We next give an interesting reformulation of connectedness.

. 6.2F. THEOREM. Let M be a metric space. Then M is connected if and only if every
continuous characteristic function on M is constant. That is, M is connected if and only
if the function identically 0 and the function identically 1 are the only characteristic
functions on M that are continuous on M.

PROOF: Let M be any metric space and let x be the characteristic function of 4 C M.
Then A =x ~'(1). Thus if x is continuous, then 4 is closed (by 5.5J) since 4 is the inverse
image under x of the closed subset {1} of R'. Similarly, if x is continuous, then
M — A=x"10) is closed, and so 4 is also open. Thus, if x is a continuous characteristic
function on M, then A is both open and closed in M. But if M is connected, then either
A=M or A=@, and in either case x is constant.

The proof of the converse is left to the reader.

Theorem 6.2F can be used to give a snappy proof of 6.2D. Indeed, suppose f is a
continuous function from the connected metric space M, into a metric space M,. To
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show that f(M,) is connected it is sufficient, by 6.2F, to show that any continuous
characteristic function x on f(M,) is constant. But since x and f are both continuous,
then xof is a continuous characteristic function on M, (use 5.3D), and hence x°f is
constant by 6.2F. It follows that x is constant.

Another interesting application of 6.2F is the following.

6.2G. THEOREM. If A, and A, are connected subsets of a metric space M, and if
A NA,#@, then 4,U A4, is also connected.
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PROOF: Let x be a continuous characteristic function on 4,U 4,. If x,€ 4, 4,, then
by 6.2F
x(x)=x(xo) (x€4,))
since A, is connected, and
x(x) = x(xo) (x€4,)

since A4, is connected. Hence y is identically equal to x(x,) and is thus constant. By 6.2F,
AU A, is connected and the proof is complete.

Exercises 6.2

1. Prove that if f is a nonconstant real-valued continuous function on R, then the range
of fis not countable.
2. Prove that there is no continuous real-valued function f on R! such that

f(x) is irrational if x is rational

and

f(x) is rational if x is irrational.

3. Prove that the interval [0, 1] is not a connected subset of R,,.
4. True or false? If A and C are connected subsets of the metric space M, and if

ACBCC,
then B is connected.

5. If A is a connected subset of the metric space M, prove that A is connected. (Hint:
Use 6.2F.)

6. If A is a connected subset of the metric space M, and if 4 C B C A4, prove that B is
connected.

7. Prove that the set of all points on a minus sign (considered as a subset of R?) is not
homeomorphic to the set of all points on a plus sign. (Hint: First decide whether or
not the center point of the plus sign can be the image under a homeomorphism of an
end point of the minus sign.)

8. Fill in the details in the following proof that every number ¢ >0 has a square root.
(a) Let f(x)=x? (0< x <o0). Then f is continuous on [0, o0), and 0 is in the range of

(b) If ¢ >0, then ¢ <(1+¢)? and (1 + ¢)? is in the range of f.
(c) Therefore, ¢ is in the range of f (why?). Hence f(x,)=x?=c for some x,. The
number x, is the square root of c.

6.3 - BOUNDED SETS AND TOTALLY BOUNDED SETS

6.3A. DEFINITION. Let (M,p) be a metric space. We say that the subset 4 of M is
bounded if there exists a positive number L such that

p(x,y)< L (x,y €A).
If 4 is bounded, we define the diameter of 4 (denoted diam A) as
diam4 = Lu.b. p(x,y).
xXEA
y€E€EA

If A is not bounded, we write diamA4 = o0.
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Thus our defintion of bounded set in an arbitrary metric space is consistent with the
definition of bounded set of real numbers in 1.7A. A subset 4 of R! is bounded if and
only if 4 is contained in some interval of finite length. Similarly it is easy to see that a
subset of R? (respectively R>) is bounded if and only if it is contained in some square
(respectively cube) whose edge has finite length.

The interval (0,0) is not a bounded subset of R'. However, (0,0) is a bounded
subset of R, since p(x,y) <1 for any x,y € R,. Indeed the diameter of any subset 4 of R,
is equal to 1, provided that 4 contains at least two points.

6.3B. Another example which will be of interest later is the following. For each k €I let
¢, denote the sequence all of whose terms are equal to O except the kth term, which is
equal to 1. Thus e,, for example, is the sequence 0,0,1,0,0,0,.... Then ¢, € (% Let EC
be the set of all the ¢, for k€ I—

E={e)eye;,...}.

If j#k, then p(e, ) =|l¢— e ll,= V2 . Hence E is bounded and diam E= V2 .

The last example shows that a subset of {2 can be bounded and still be pretty “big” in
the sense of having infinitely many points none of which is “close” to any of the others.
For the theory of general metric spaces the concept of “totally bounded” turns out to be
more useful than “bounded.”

6.3C. DEFINITION. Let {M,p) be a metric space. The subset 4 of M is said to be totally
bounded if, given €>0, there exist a finite number of subsets 4,,4,,...,4, of M such
that diamA, <e (k=1,...,n) and such that 4 C U%_ ,4,.

(It is clear that the phrase “4 C U%_,4,” may be replaced by “4=U}_,4,.”)

If a set A is contained in the union of sets 4,,4,,..., we sometimes say that the 4,
cover A. Thus 4 C M is totally bounded if and only if, for every ¢ >0, A can be covered
by a finite number of subsets of M whose diameters are all less than e.

Some authors use the term “precompact” instead of “totally bounded”. “Totally
bounded” is a stronger restriction than “bounded.”

6.3D. THEOREM. If the subset 4 of the metric space { M, p) is totally bounded, then A4 is
bounded.

PROOF: If A is totally bounded, then there exist nonempty subsets 4,,4,,...,4, of M
such that diam4, <1 (k= l,...;p) and A C U}, 4,. For each k="1,...,n, let g, be any
point in A,. Then let D=p(a,,a,)+p(a,a3)+ -+ +p(a,_,,a,). Now for any points
x,y €A, we have x €A,,y €A, for some i and j (since the 4, cover 4). We may assume
that i < j. But then p(x,y) < p(x,a)+[p(a;,a;, 1)+ - - - +p(a;_,,a)]+ p(a;,y). Since diam 4,
<1 we have p(x,q;) <1. Similarly p(a;,y) < 1. Hence

p(x,y)<1+D+1=D+2 (x,y€A)
and thus A4 is bounded.

In R! it turns out that bounded and totally bounded mean the same thing. In fact, if
AC R is bounded, then 4 c[— L, L] for some L>0. Given € >0, A is certainly covered
by

€ € € € €
[ L,—L+-2—],[ L+%, L+2-2—],...,[ L+(n=13, L+n2]
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where n is any positive integer such that n(e/2)>2L. Thus, in R', a set is totally
bounded if and only if it is bounded.
The same result holds true for R". The proof (for n=2) is reserved for an exercise.
On the other hand, in R, “bounded” and “totally bounded” are not at all equivalent.
For we have seen that every subset of R, is bounded. However, if B C R, and diam B <3,
then B can contain at most one point. A finite number of subsets of R, each of which
has diameter <} can therefore cover only a finite subset of R,. Thus

6.3E. COROLLARY. A subset 4 of R, is totally bounded if and only if A contains only a
finite number of points.

We will soon show that the subset E of (2 defined in 6.3B is bounded but is not totally
bounded.

In summary then, in any metric space a totally bounded set is bounded. However, in
some metric spaces there are bounded sets which are not totally bounded.

We now give two important reformulations of “totally bounded.”

6.3F. DEFINITION. Let A be a subset of the metric space M. The subset B of 4 is said to
be e-dense in A (where € >0) if for every x €4 there exists y € B such that p(x,y)<e.
(That is, B is e-dense in A if each point of A is within distance € from some point of B.)

6.3G. THEOREM. The subset of the metric space (M, p) is totally bounded if and only if,
for every € >0, A contains a finite subset {x,,...,x,} which is e-dense in 4.

PROOF: Fix €>0. If 4 is totally bounded, then 4= U7_,4; where diam4;<e. We
may assume A,# 3. If a, EA4,(i=1,...,n), then {a,,...,a,} is e-dense in 4. Hence, if 4 is
totally bounded, then A has a finite e-dense subset.

Conversely, if {x,,...,x,} is €¢/3-dense in A, then B[x;;¢/3],...,B[x,;¢/3] form a
covering of A by sets of diameter <e. The theorem follows.

We now present the most important property of totally bounded sets.

6.3H. THEOREM. Let (M,p) be a metric space. The subset 4 of M totally bounded if
and only if every sequence of points of A contains a Cauchy subsequence.

PROOF: Suppose A is totally bounded. Let {x,}_, be a sequence of points of 4. We
wish to show that {x,}%_, has a Cauchy sequence. The set A can be covered by a finite
number of subsets of 4 of diameter < 1. One of these sets, call it 4, must contain x, for
infinitely many values of n (why?). Choose any n, €1 such that x, €4,. Now 4, is
clearly totally bounded and hence can be covered by a finite number of subsets of 4, of
diameter <3. One of the sets, call it 4,, must contain x, for infinitely many n. Let n, be
any integer greater than n, such that x, €4,. Since 4,C A4, we also have x, €4,.
Continuing in this fashion we obtain, for any k€1, a subset A, of A,_, with diam4,
<1/k, and a term x, € A4, of the sequence {x,} ;. Since

X, ,X

e X Xy
all lie in A, and since diam4, <1/k, it follows that {x, }i_; is a Cauchy subsequence
of {xn}:o= 1
Conversely, suppose every sequence {x,}>_, of points of some subset 4 of M contains
a Cauchy subsequence. We wish to show that A is totally bounded. Suppose the
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contrary. Then by 6.5G there exists some € >0 such that A contains no finite e-dense
subset. Thus if x, €4, then the set {x,} is not e-dense in 4, so there exists x, EA4 such
that p(x,,x,) > €. But then {x,;,x,} is not e-dense in 4 and so there exists x; €4 such that
p(x,,x3) > € and p(x,,x;) > e. Continuing in this fashion we may construct a sequence
{X,}w=1 of points of 4 such that p(x;,x,)> € for any j,k € I,(j# k). But then {x,};_,
has no Cauchy subsequence, which contradicts our hypothesis. This contradiction shows
that A must be totally bounded and the proof is complete.

From 6.3H it follows immediately that the subset E of (* defined in 6.3B is not totally

bounded. For, since p(ej,ek)=\/—2_ if j#k, the sequence e;,e,,... has no Cauchy
subsequence.

Exercises 6.3

Prove that every bounded subset of R? is totally bounded.

Give an example of a bounded subset of {* which is not totally bounded.

Give an example of an infinite subset of 2 which is totally bounded.

Prove that every finite subset of a metric space M is totally bounded.

If (M, p) is totally bounded and 4 c M, prove that {A,p) is totally bounded.

Let B be a subset of the metric space M. Prove that B is dense in M if and only if B is

e-dense in M for every € > 0.

7. Let A be an infinite bounded subset of R'. Prove that there is at least one cluster
point of 4 in R'. (Hint: Suppose A CJ, where J, is a closed bounded interval. If J, is
divided in half, then at least one of the halves must contain infinitely many points of
A. Call this half J,. Continue this process.) This result is known as the Bolzano-
Weierstrass theorem.

8. Give another proof of the Bolzano-Weierstrass theorem, beginning as follows: Let 4

be an infinite bounded subset of R'. Let {a,}%., be a sequence of distinct points of

A. Then {a,}7., contains a Cauchy subsequence (why?). Now finish the proof.

n=1

A a2

6.4 COMPLETE METRIC SPACES

In 2.10D we saw that in the metric space R' every Cauchy sequence of points in R'
converges to a point in R'. In 4.3F we noted that there are metric spaces {(M,p) in
which not all Cauchy sequences_of points of M converge to a point in M.

6.4A. DEFINITION. We say that the metric space M is complete if every Cauchy
sequence of points in M converges to a point in M.

Thus R' is complete by 2.10D. In the exercises you will be asked to show that R? and
R, are also complete.

6.4B. We now show that 2 is complete. If s(V,s@, ... is a Cauchy sequence of points in
£2, we must find s € 2 such that s"™V—s as n—o0. Since each s is itself a sequence, the
notation will be a little complicated. Denote the kth term of the sequence s™ by s{ so
that

[oe]
0 2 2
S(n)={s§cn)}k=| and ||s(")||2=k218,((").
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Since s(M,s®,... is a Cauchy sequence in 2, given € >0 there exists N €/ such that
p[s™, s < € if n,m> N. That is,

s =s",<e  (n,m>N), (1
which implies
|s™=sM|,<e  (n>N).
Thus, if n> N,
IsPl= 1[5 = 5N ]+ 5], < e+ [|sM .
Thus, for some 4 >0,
Is@ll, <4 (n>N). @)
Now, for any k € I, we have from (1)
|sim = sim| < s — s, <e  (n,m>N).

Hence (for fixed k) the sequence {s{™}*_, is a Cauchy sequence in R' and so, by 2.10D,

converges to a number s, €R'. Let s denote the sequence {s,}%_,. First we will show
that s € (2. From (2) we have

Hence for any integer L€ I,
L
Ssi'<a? (n>N). 3)

But for k=1,2,...,L, we have s,g")—>sk as n—o0. Hence letting n—o0 in (3) and using
2.7A and 2.7E, we have

L
D si<A? (L=1,2,...).
k=1

It follows that

[
st < A%

k=1

which proves that s={s,}%_, is in {*. From (1) we have

o0

> (s - s,((”‘))2 <& (n,m>N).
k=1
Hence for L€ I,
L
S (s sy < (n,m>N).
k=1
Letting m— o0 (and using lim,,_, s{ =s,, 2.7A, and 2.7E), we have
L
2(s£")—sk)2<ez (n>N;Lel),
k=1

and so

0
> (s -5) <& (n>N).
k=1
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But this says that p(s™,s)=|s"™—s]||,<e if n> N, which proves that s, 5@, ... con-
verges in 2 to the point s. This completes the proof.

6.4C. THEOREM. If {M,p) is a complete metric space and A4 is a closed subset of M,
then (A4,p) is also complete.

PROOF: Let {x,}>_, be a Cauchy sequence of points in {4,p). We must show that
{x,}-, converges to a point in 4. Since A C M, {x,};-, is a Cauchy sequence of points
of M. Thus since M is complete, {x,}_, must converge to some x € M. But x is a limit

point of 4 because x is the limit of a sequence of points in A. Hence x € A because A4 is
closed, and the proof is complete.

Thus the metric space [0, 1] (with absolute value metric) is complete. For [0,1] is a
closed subset of R
Here is a generalization of the nested interval theorem 2.10E.

6.4D. THEOREM. Let {M,p) be a complete metric space. For each n€1 let F, be a
non-empty, closed bounded subset of M such that

(@ FIDF,D---DF,DF,,,D*-",
and

(b) diam F,—0 as n—co0.
Then N2, F, contains precisely one point.

PROOF: For each n€1, let g, be any point in F,. Then, by (a),
a,,a,,1,a,,4-.- allliein F,. (D

Given €>0 there exists, by (b), an integer N €] such that diam F, <e. Now ay,
ay 4154y 42 all lie in Fy. For m,n> N we then have p(a,,a,)<diamFy <e. This
proves that {a,}y-, is a Cauchy sequence. Since M is complete there exists a € M such
that lim,_ a,=a. For any n €], the statement (1) then shows that g is a limit point of
the closed set F, and hence a€F,. Thus a€n,;_,F, If bEM,b#a, then p(a,b)
>diam F, for n sufficiently large. Hence b cannot be in N, F,. This completes the

proof.

6.4E. We are now going to discuss a class of functions called contractions. Although
their usefulness will not be immediately apparent, they turn out to have important
applications. In a later chapter we use a result on contractions to prove an existence
theorem for differential equations.

To simplify notation in this discussion, if 7: M—M and if x €M, we will write Tx
instead of T'(x). We will also write T2 instead of T°T, T2 instead of T°T? etc.

DEFINITION. Let (M,p) be a metric space. If T: M— M, we say that T is a contraction
on M if there exists « € R with 0 < a <1 such that

p(Tx, Ty) < ap(x,y) (x,yeM).

(We emphasize that the number o must be independent of x and y.)
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Thus T is a contraction if the distance from Tx to Ty is not greater than a times the
distance from x to y. We see that applying T to each of two points “contracts” the
distance between them.

The reader should verify that if 7 is a contraction on M then T is continuous on M.

Here is an easy example of a contraction. If u={u,}%_, € %, let Tu={u,/2}%_,. Then
T is-a contraction on 2. For if v={v,}%_, is any other point in % then

w 1/2
p(Tit, To)= | Tu=Toll,=| 2 (5 - 7") = 4llu—oll,

n=1

=3p(u,0).

Thus in this example, « may be taken to be 1. For this T it is obvious that there is one
and only one sequence s€ {? such that Ts—s—namely, the sequence 0,0,0,.... This
illustrates the following theorem, which is called the Picard or the Banach fixed-point
theorem.

6.4F. THEOREM. Let (M,p) be a complete metric space. If T is a contraction on M,
then there is one and only one point x in M.such that Tx = x. (This is often stated as “T
has precisely one fixed point.”)

PROOF: Suppose x,y € M. We have p(Tx,Ty) < ap(x,y) for some a,0<a<1. Then
o(T?x, T») < ap(Tx, Ty) < a’p(x,y). Indeed, for any n €1, it is easy to show that

p(T"x, T"y) < a"p(x,y) (x,yeEM). (H

Now choose any xo€ M. Let x, = Txg,x,=Tx,,...,X, ;= Tx,. Then x,= T*x, and, for
any n € I,x, = T"x,. We will first show that {x,,},,=l is a Cauchy sequence. Forif m.n€
(and m > n, say, so that m=n+p) we have

p(xn’xm)=p(xn’xn+p) < p(x,,,x,,+1)+p(x,,+l,x,,+2)+ T +p(xn+p—l’xn+p)
=p(T"xo, T"x ) +p(T"* 'x0, T"*'x)) 4 - - +p(T"* 77 1xo, T"*7 7 1x)).

Thus by (1)
P(X X) < @"D(Xg0 1)+ @™ p(guxy) -+ @™ p(xg,x,)

<a"p(xgx)(1+a+a’+--+),

and hence
a"p(xg, %)
—.
- p(xn’xm) 1—a

Since lim,_,  a”"=0, it follows easily that p(x,,x,) can be made arbitrarily small by

taking n (and hence m) sufficiently large. Thus {x,}:_, is Cauchy. Since (by hypothesxs)
M is complete, there exists x €M such that lim,_ . x,= x. Therefore lim, Tx,=
(why?). But Tx, = x, ., and so { T'x,}_, being a subsequence of {x,}_,, must converge
to llmn_,m .= x. It follows that Tx = x, so that x is a fixed point. All that remains to be
shown is that if y € M,y # x, then y cannot be a fixed point. For suppose the contrary.
Then Ty=y and so (since Tx=x),p(x,y)=p(Tx,Ty)< ap(x,y). Since p(x,y)7%0 this
implies 1 < a which is a contradiction. Hence Ty #y and the proof is complete.
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FExercises 6.4

1. Prove that R, is complete.
2. Prove that the interval (0, 1) with absolute value metric is not a complete metric space.
Prove that (0, 1) with the metric of R, is a complete metric space.
3. Prove that R? is complete.
4. Prove that {* is complete. (Model your proof after the proof that 2 is complete.)
5. If
T(x)=x* (0<x<}),
prove that T is a contraction on (0, §], but that T has no fixed point.
6. If T:[0,1]—{0,1] and if there is a real number « with 0< a <1 such that
| T'(x)| < a (0<x<1),

where T’ is the derivative of T, prove that T is a contraction on [0, 1].

7. Let M be a metric space that is both totally bounded and complete. Prove that every
sequence of points of M has a subsequence that converges to a point of M.

8. Let M =[0, ) with the absolute value metric p(x,y)=|x —y|. Let

flx)=—

1+ x?2
Show that f: M— M, that

p[f(x)f()]<p(xy)  (x.yEM),
but that f has no fixed point

(0< x < o0).

6.5 COMPACT METRIC SPACES

It is because the closed bounded interval [a,b] is compact that many of the theorems
about continuous functions on [a,b] hold. We now begin a general discussion of
compact metric spaces.

6.5A. DEFINITION. The metric space {(M,p) is said to be compact if {(M,p) is both
complete and totally bounded.

For example, the metric space [a,b] (with absolute value metric) is totally bounded
and, by 6.4C, is complete. Hence [a,b] is compact. The space R' is complete but not
totally bounded. Hence R' is not compact. The metric space (0, 1) (with absolute value
metric) is totally bounded but not complete and hence is not compact.

From 6.3E we see that an infinite subset of R, cannot be compact. We leave it to the
reader to show that every finite subset of R, actually is compact. (See Exercise 2.)

A very useful reformulation of compactness is continued in the following.

6.5B. THEOREM. The metric space {M,p) is compact if and only if every sequence of
points in M has a subsequence converging to a point in M.

PROOF: Suppose first that M is compact and that {x,}5_, is any sequence of points
in M. Then, by 6.3H, since M is totally bounded, the sequence {x,}5_, has a Cauchy
subsequence {x, }7’~;. But {x, }?°_, converges to a point in M since M is complete.

Thus if M is compact, then every sequence in M contains a convergent subsequence.
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Conversely, suppose every sequence in M has a convergent subsequence. Then, by
6.3H, M is totally bounded. To show that M is complete we must show that every
Cauchy sequence {x,}>_, in M converges to a point of M. By assumption, {x,}_, has
a subsequence {x, };~, which converges to a point x in M. Since {x,}7_, is Cauchy, it
is then not difficult to show that {x,}>_, itself converges to x. Hence M is complete and

n=1

so M is compact. This completes the proof.

Here is a useful corollary.

6.5C. corOLLARY. If A is a closed subset of the compact metric space (M, p) then the
metric space {A,p) is also compact.

PROOF: Any sequence {x,}>_, of points of 4 is a sequence of points of M and
hence, by 6.5B, has a subsequence converging to a point x in M. But then x is a limit
point of 4 and so x €4 (since A is closed). Thus any sequence in 4 has a subsequence
converging to a point in 4. By 6.5B, A4 is compact.

In the other direction we have the following.

6.5D. THEOREM. Let A be a subset of the metric space {M,p). If {4,p) is compact,
then A4 is a closed subset of (M, p).

PROOF: Let x € M be any limit point of A. Then there is a sequence {x,}-,in A
converging to x. But {x,}%_, is a Cauchy sequence in 4 and so, since 4 is complete,
{x,}x., converges to a point in 4. This point must be x and so x € 4. Thus 4 contains
all its limit points and so A is closed. (Note that the proof uses only the completeness of
A. However, it is in the context of compactness, rather than completeness, that the result

will be useful.)

6.5E. If M is any set, the family % of subsets 4 of M is said to form a covering of M if
M CU 4 cqA. We will be primarily interested in open coverings—that is, coverings & of
a metric space M where each 4 € ¥ is an open subset of M.

For example, the family of open intervals (1/n,1—1/n) for n=3,4,5,... is an open
covering of the metric space (0,1) (with absolute value metric). Note that there are
infinitely many open sets in this covering of (0, 1) and that no finite number of these sets
form a covering!

On the other hand, the reader should experiment with some open coverings of [0, 1].
We will find that if & is any open covering of [0, 1], then some finite number of sets in &
will also form a covering. A proof of this will be given shortly.

6.5F. DEFINITION. A metric space M is said to have the Heine-Borel property if,
whenever & is an open covering of M, then there exist a finite number of sets
G,,...,G,€ Y such that {G,,...,G,} is still a covering of M.

The Heine-Borel property is sometimes stated as “every open covering of M admits a
finite subcovering.” From the first example in 6.5E we see that the metric space (0,1)
does not have the Heine-Borel property. The next two theorems show the reason the
Heine-Borel property is discussed in this section.
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6.5G. THEOREM. If M is a compact metric space, then M has the Heine-Borel proper-
ty.*

PROOF: Suppose the contrary. Then, for some open covering ¥, no finite number of
sets in & form a covering of M. Now M is totally bounded and hence may be written as
the union of a finite number of bounded subsets each of whose diameter is less than 1.
But then one of these subsets, call it 4,, cannot be covered by a finite number of sets in
% . (Otherwise, all of M could be covered by a finite number of sets in %.) But, since
diam 4, =diam 4, (verify), 4, is a closed subset of M (5.5E) whose diameter is less than 1
and which cannot be covered by a finite number of sets in %. Since 4, is itself totally
bounded, the same reasoning shows the existence of a subset 4, of A4, with diam4 2<3
and such that 4, cannot be covered by a finite number of sets in ¥. Thus 4,C4,,
diam4, <1, and A2 cannot be covered by a finite number of sets in ¥. Continuing in
this fashion we can show, for any n € I, the existence of 4, C M such that 4,0 A4,> -
DA,D---,diamA4, <1/n, and such that no finite number of sets in ¥ form a covering
of any 4,. By 6. 4D there is precisely one point x in N ®_,4,. Now, since ¥ is a covering
of M, there is a set G in ¥ such that x € G. But G is-open (since % is an open covering)
and so there exists an open ball B [x;r]C G for some r >0. But if N €1 satisfies 1/N <r,
then diamA4, <1/N <r. Since x € 4, we have 4, C B[x;r]C G. Hence G alone covers

~- But this is a contradiction since no finite number of sets in % were supposed to form
a covering of Ay. The contradiction proves the theorem.

The converse of 6.5G is also true.

6.5H. THEOREM. If the metric space M has the Heine-Borel property, then M is
compact.

PROOF: Let M be a metric space with the Heine-Borel property, and let {x,};_, b
any sequence of points of M. In order to prove that M is compact it is enough, by 6.SB,
to show that {x,};>_, has a subsequence which converges to a point of M.

Suppose first that about each point x in M there were an open ball B, which
contained x, for only finitely many values of n. The family of all such B, would then be
an open covering of M. By hypothesis, then, M could be covered by a finite number of
these B,. This is clearly impossible. For, since each B, contains x, for only a finite
number of values of n, the union of any finite number of the B, could not contain all the
X,

Hence there must be some point x in M such that every open ball about x contains x,
for infinitely many values of n. Thus there exists n, €/ such that x, € B[x;1]; there
exists n, > n; such that x, € B[x; ;]; indeed, for any k €/ there exists n, > n, _, such that
x, € B[x;1/k]. This subsequence {x, }i=1 of {x,}5-, clearly converges to the point x
in M and the proof is complete.

We list one more condition equivalent to compactness.

6.51. DEFINITION. A family % of subsets of a set M is said to have the finite intersection
property if the intersection of any finite number of sets in ¥ is never empty. (That is, if
whenever F,F,,...,F,€% then FFNF,Nn - N F,#3&.)

* The Heine-Borel property is often taken as the definition of compactness, since the Heine-Borel property

. does not depend directly on the metric but rather on the notion of open set which is available in a class of
spaces more general than metric spaces.
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Thus the family of all closed intervals [—1/n,1/n] has the finite intersection property.
So does the family of open intervals (0, 1/ n).

6.5). THEOREM. The metric space M is compact if and only if, whenever ¥ is a family
of closed subsets of M with the finite intersection property, then N pc ¢ FF# Q.

PROOF: Suppose first that M is a compact metric space and that & is a family of
closed subsets of M with the finite intersection property. We must show that

N F+g. (1)
Feg
For each FEY let G=F' =M —F, and let § be the family of all such open sets G. If
F\,F,,...,F, are any finite number of sets in &, then

Flﬂan"'ﬁFn=M_(GlU62U"'UG") (2)

by (1) of 1.2H. Similarly,
N F=M- U G. 3)
Fe% Ge$§
By hypothesis, the left side of (2) is not empty, and so M —(G,U - UG,)# Q. Hence
no finite number of sets in § form a covering of M. Since M is compact, it follows from
6.5G that § itself is not a covering of M. Hence the right side of (3) is not empty. This
proves (1), which is what we wished to show.
We leave the proof of the converse to the reader.

Exercises 6.5

Use 6.5A to prove 6.5C.

Prove that every finite subset of any metric space is compact.

Prove that a subset 4 of R? is compact if and only if 4 is closed and bounded.

If A and B are compact subsets of R, prove that 4 X B is a compact subset of R2.
Let f be a continuous real-valued function on [a,b]. Prove that the graph of fis a
compact subset of R2.

6. For each x in (0,1) let /_ denote the open interval (x/2,(x+1)/2). Show that the
family § of all such I, is an open covering of (0,1) which admits no finite
subcovering of (0, 1).

7. Add two appropriate sets to the family § of the preceding exercise to form an open
covering JC of [0, 1]. Show that I3 does admit a finite subcovering of [0, 1].

8. Give an example of a connected subset of R! that is not compact.

9. Prove that a connected subset of R, is compact.

10. Give an example of a closed bounded subset of > which is not compact.
11.- Prove that the metric space M is compact if and only if every infinite subset of M
has a cluster point in M.

LNALUN -

6.6 CONTINUOUS FUNCTIONS ON COMPACT METRIC SPACES

Because of the tremendous importance of the following theorem we give two proofs,
each based on a different criterion for compactness.

6.6A. THEOREM. Let f be a continuous function from the compact metric space M, into
the metric space M,. Then the range f(M,) of f is also compact.
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PROOF 1: Let § be any open covering of f(M,). For each G €9 the set f~!(G) is, by
5.4G, an open subset of M. The family of all such sets f~!(G) for G € ¢ is therefore an
open covering of M,. Since M, is compact, a finite number of these sets—say
fY(G)),....f ~(G,)—also form a covering of M,. But then G,,...,G, form a covering of
f(M)). Thus there are a finite number of sets in § which form a covering of f(M,), and
so f(M,) is compact.

PROOF 2: Let {y,}_, be any sequence of points in f(M,). For each n€ I choose
x, €M, such that f(x,)=y, By 6.5B, {x,}7_, has a subsequence {x,}7_, which
converges to a point x in M,. Since f is continuous on M,, it then follows from 5.3C that
lim _, . f(x,)=f(x). That is, {y, }i-, converges to f(x)€Ef(M,). Thus any sequence
{y,}_, in f(M,) has a convergent subsequence and so, by 6.5B, f(M,) is compact.

Since compact spaces are bounded the following corollary is immediate.

6.6B. COROLLARY. Let f be a continuous function from the compact metric space M,
into the metric space M,. Then the range f(M,) of f is a bounded subset of M,.

At this time it is convenient to introduce the notion of “bounded function.”

6.6C. DEFINITION. Let f be a function from a set A into a metric space M. We say that
the function f is bounded if its range f(A4) is a bounded subset of M.

Thus 6.6B states that a continuous function on a compact metric space M, (into a
metric space M,) must be bounded. When M,=R' and M, is the closed bounded
interval [a,b] we thus have corollary 6.6D.

6.6D. coroLLARY. If the real-valued function f is continuous on a closed bounded
interval in R, then f must be bounded.

The reader should construct examples to show that 6.6D is no longer true if either of
the words “closed” or “bounded” is removed from the hypothesis.

6.6E. If fis a real-valued function on a set 4, we say (quite naturally) that f attains a
maximum value at a€ 4 if

f(@>f(x) (x€A).
For example, if
f(x)=x*  (—1<x<1),
then f attains a maximum at x=1 and x=—1. If
g(x)=x* (—oo<x<m),

then g clearly does not attain a maximum value. Indeed if a real-valued function f on a
set A is not bounded above, then f cannot attain a maximum at any point of 4.
On the other hand, the examples

f(x)=x (0<x<1),
f(x)=£—;—1 (1< x< o),

show that even a bounded continuous real-valued function need not attain a maximum
at any point in its domain. See Figure 24.



6.6 CONTINUOUS FUNCTIONS ON COMPACT METRIC SPACES 165

fx)=x(O0<x<1)

(1< x < )

_x1
x

—_

flx)

FIGURE 24, Two bounded, continuous functions, neither of which attains a maximum

We leave it to the reader to formulate the corresponding definition and examples for
minimum values.

Here is where compactness enters into the picture.
6.6F. THEOREM. If the real-valued function f is continuous on the compact metric space
M, then f attains a maximum value at some point of M. Also, f attains a minimum value
at some point of M.

PROOF 1: By 6.6D, the function f must be bounded. Let L=1lub. c,f(x). By
definition of least upper bound, the number L must be a limit point of f(M). But by
6.6A we know that f(M) is compact. Hence, by 6.5D, f(M) is a closed subset of R'.
Thus the number L [which is a limit point of f(M)] must lie in f(M). That is, L= f(a)
for some a € M. It is then clear that f attains a maximum at the point a.

The assertion about a minimum value may be proved in a similar manner.
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PROOF 2: Again let L=lub. o, f(x). If L&Zf(M), then the function g defined by
g(x)=L—f(x) (x € M) is continuous on M and g never takes the value 0. By 5.3G, 1/g
is continuous on M and thus, by 6.6D, 1/g must be bounded. Thus

1 1
= <N
g(x)  L—f(x)
for some N >0 and all x€ M. Hence f(x)< L—1/N for all x&€ M. But this says that
L—1/N is an upper bound for f(M), which is a contradiction, since L was supposed to

be the least upper bound. Thus we must have L € f(M), and the conclusion follows as in
proof 1.

For our treatment of calculus we need the following consequence of 6.6F.

6.6G. coroLLARY. If the real-valued function f is continuous on the closed bounded
interval [a,b], then f attains a maximum and a minimum value at points of [a,b].

Exercises 6.6

1. Show that if f: 4—R' and f attains a maximum value at a € 4, then
f(@)=1ab. ()

2. Show that if

S l-i-lx2

then f attains a maximum value but does not attain a minimum value.

3. Give an example of a continuous bounded function on (— o0, c0) that attains neither a
maximum nor a minimum value.

4. Give an example of a real-valued continuous function on [0,1) that attains a
minimum value but does not attain a maximum.

5. If f is a continuous real-valued function on the compact connected metric space M,
prove that f takes on every value between its minimum value and its maximum value.

(—oo<x< ),

6.7 CONTINUITY OF THE INVERSE FUNCTION

6.7A. We raise the following question: If the function f is continuous and 1-1, is the
inverse function f ~! necessarily continuous? It is not hard to show that the answer is no.
For a first example consider f: R,= R defined by

f(x)=x (—oo<x< ).

That is, f maps every real number onto itself. However, in the domain of f we have the
discrete metric, while in the range of f we have the absolute value metric. Now f is
obviously 1-1. Moreover f is continuous, since every function on R, is continuous.
However, f~! is not continuous, for if f~! were continuous, then f would be a
homeomorphism of R, onto R! (5.5L). But then, by (b) of 5.5K, f(G) would be an open
set in R' whenever G is an open set in R,. Since f(G)= G, this would imply that if G is
open in R, then G is open in R'. But this is clearly false, since every subset of R, is open
(5.4D), but not every subset of R is open.
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For a more intuitive example consider
g(x)={cosx,sinx) (0< x<2m).

Then g is a 1-1 continuous function from the interval J=[0,27) onto the circumference
C of the unit circle in R2 But g~ ! then maps the circumference onto the interval and
hence cannot be continuous, since a circumference must be “broken” in order to be
spread out on an interval. Indeed, we see that g~ ! sends the point {(1,0) onto 0€J, but
sends all points of C near but below <1,0) onto points near 27 in J.

However, if the domain of the 1-1 continuous function f is compact, then f~' will be
continuous.

6.7B. THEOREM. If fis a 1-1 continuous function from the compact metric space M,
onto the metric space M,, then f~' is continuous (on M,), and hence f is a
homeomorphism of M, onto M,.

PROOF: By 5.5J, to show that f~! is continuous we must show that if F is any closed
subset of M|, then the inverse image of F under f~' is closed in M,. But the inverse
image of F under f~! is precisely f(F) (verify). Thus we need to show that if F is closed
in M,, then f(F) is closed in M,. But if F is closed in M,, then, by 6.5C, F itself is
compact. By 6.6A we then know that f(F) is compact. Hence, by 6.5D, f(F) is closed in
M,, which is what we wished to show.

As an application of 6.7B let us show that Vx is a continuous function of x. More
precisely, if g is defined by
g(x)=Vx  (0<x<oo),

we will prove that g is continuous on [0, ). For any N €1 the function f defined by

f(x)=x2 (0<x<N)
is a 1-1 continuous function from the compact space [0, N] onto [0, N ?]. Hence, by 6.7B,
f~'is continuous on [0, N?]. But f ! is precisely the restriction of g to [0, N 2]. It follows
that g must be continuous on [0, o).

Exercises 6.7

1. Use your intuition on this one. Let f be the function which sends a point on a flat
map of the world onto the corresponding point on a globe.
(a) Is f continuous?
(b) Is f~! continuous?

2. Prove that Vx isa continuous function for anynel.

3. Show that if fis a 1 — 1 continuous function from a metric space M into R, then f~!
continuous and hence f is a homeomorphism.

4. Show that if f is a 1-1 continuous function from R! into R', then f is a homeo-
morphism.

6.8 UNIFORM CONTINUITY

6.8A. We have defined the real-valued function f as continuous at the point € R if
given € >0, there exists § >0 such that

|f(x)=f(a)|<e (Ix—a|<9).
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Now, in general, the number § depends not only on € but also on which point a is under
consideration. For example, let

g(x)=x* (—oo<x<).

Then with e=2, the statement
lg(x)—g(a)l <2  (|x—a|<3) (M
is true if a=1. [For then g(x)—g(a)=x*—a?’=x*—1. If |x—a| <}, then 1 <x<3 and
so — 2 < g(x)— g(a)<3.] However, the statement (1) is false for a=10. For, when a=10,
we have g(x)—g(a)=x2—100. If x= 104, then |x—a| <3} but g(x)—g(a)=(104)>—10*

=5+ and so | g(x)—g(a)|>2.
Thus (even though g is continuous at the point 10 as well as at the point 1) the number

8=1is usable at a=1 but not at a=10 as a § corresponding to e=2.
It is not difficult to show, in fact, that there is no one § >0 such that the statement

lg(x)—g(a)l<2  (lx—al<$) 2)

is true for all a€ R". For g(x)— g(a)=(x —a)(x + a). Suppose there were a § for which
(2) held for all a. We would then have for a>0 and x=a+6/2,

|8(X)—g(a)|=|x—a|-;x+a|=g.

2a+g‘<2.

This would imply
ab<2

for all a>0, and this is clearly false. Hence, for this function g, corresponding to e=2
there is no § that will “work” for all a simultaneously. (Nevertheless, g is continuous at
eacha€R')

If a continuous function is such that, given ¢, we can always choose & so that §
depends only on € but not on a, then we say that the function is uniformly continuous.
We now make this precise for functions on metric spaces.

6.8B. DEFINITION. Let {(M,,p,> and {M,,p,> be metric spaces. If f: M, —>M,, we say
that f is uniformly continuous on M, if given € >0, there exists § >0 such that

P2 f(x).f(a)]<e [pi(x,a)<8;a€M,].

In the special case (M ,,p,>={(M,,p,>= R' we thus have “the real-valued function f is
uniformly continuous on R' if given € >0 there exists § >0 such that "

| f(x)—f(a)|<e (Ix—a|<8; —0<a<o).”

What must be emphasized here is that, given ¢, the § must be such so that the
statement

[f(x)=f(a)|<e  (Ix—a|<9)
is true for all a simultaneously. The function g of 6.8A is therefore not uniformly
continuous on R' even though g is continuous on R'.

Thus not every function which is continuous on a metric space M is uniformly
continuous on M. On the other hand, it is clear from 6.8B that if f is uniformly
continuous on M then f is continuous at each ¢ € M and hence f is continuous on M.

We will now show that if M is compact, then the continuity of f on M implies the

uniform continuity of f on M. (Thus on a compact metric space, a function is continuous
if and only if it is uniformly continuous.)
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6.8C. THEOREM. Let (M,,p,> be a compact metric space. If f is a continuous function
from M, into a metric space {(M,,p,>, then f is uniformly continuous on M,.

PROOF: By hypothesis, f is continuous at each a € M,. Thus for each a € M,, given
€ >0 there exists » >0 (depending on «a) such that

p[f()S(@)]<5  [pi(xa)<r]. (1)

The family of open balls B[a;r/2] for all a € M, is an open covering of M,. Since M, is
compact, there are a finite number of these balls—say B[a,;r,/2],...,B[a,;r,/2]—which
form a covering of M,. Now let §=min(r,/2,...,r,/2). For any a€ M, we have
a€Bla;r;/2] for some j=1,...,n, and so p(a,q)<r;/2. Now if p,(x,a)<$, then
pi(x,a)<r;/2 and hence p,(x,a)<r;. By (1) (with a;,r; in place of a,r) we then have

pa f(x).f(a)] <5
and
pa[ f(a)f(@)] <5

from which it follows that p,[f(x),f(a)]<e. Thus for § =min(r,/2,...,r,/2), we have
shown that, for all a€ M|,

pz[f(x),f(a)]<e [pl(x,a)<6].

This proves that f is uniformly continuous on M,.

6.8D. corOLLARY. If the real-valued function f is continuous on the closed bounded
interval [a, b], then f is uniformly continuous on [a,b].

6.8E. The function f defined by
f=1  (0<x<)

is continuous on (0,1]. However, there is no way to define f(0) so that the resulting
extension of f is continuous on [0, 1] (why?).
For another such example, the function g defined by

g(x)=sin% (x#0)

is continuous and bounded on R'—{0}. But g cannot be extended to a function
continuous on all of R'. (For lim,_,g(x) does not exist.)

We pose the following problem: If the function f is continuous on a dense subset
(5.5M) of a metric space M, when can f be extended to a function continuous on all of
M7 The partial answer given here involves uniform continuity.

6.8F. THEOREM. Let (M,,p,) be a metric space and let A be a dense subset of M,. If f
is a uniformly continuous function from {A4,p,) into a complete metric space {(M,,p,),
then f can be extended to a uniformly continuous function F from M, into M,.

PROOF: First we will prove that if {x,}>_, is a Cauchy sequence of points in A4, then
{f(x,)}- is Cauchy in M,. Indeed, given € >0 choose § >0 such that

pa[ f(x)f(P)]<e  [pi(x.0)<8;x,y EA] (1
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(We can find such a § since f is uniformly continuous on A4.) Now, since {x,};_, is
Cauchy in A there exists N €/ such that

pl(xm"xn) <é (m’n > N) (2)
From (1) and (2) it follows that
P2 S (xS (%) ] <€ (m,n>N),

which proves that { f(x,)}>_, is Cauchy in M,.

Now if xE€ A4, define F(x) to be equal to f(x). If x&M, but xZA4, then, by
hypothesis, x is a limit point of 4. Hence lim,_ x,= x for some sequence {x,}y -, of
points of A. The sequence {x,};, is convergent in M, and hence is a Cauchy sequence
of points of 4. According to the first paragraph, { f(x,)}>_, is then Cauchy in M,. Since
M, is complete, lim,_,  f(x,) exists. We define

F(x)= nli)ngo f(x,)-

We leave it to the reader to show that if {y,}5_, is any other sequence in 4 which
converges to x, then lim,_ f(y,)=lim,_ f(x,). This will show that the definition of
F(x) does not depend on the choice of the sequence {x,};-,.

We have thus defined F(x) for all x€M,, and F is clearly an extension of f. It
remains to show that F is uniformly continuous on M. Given €>0 choose §; such that

n—oo

p[ SIS ]<3  [P(xy)<dixyEA]. (3)

If a,b € M,, choose x,y €A such that p,(x,a)<8,/3,p,(y,b)<8,/3 and such that
pa[ F(x),F(a)] <3 (4)
o[ F(»).F(b)]<3. (%)

[This is possible by the very definition of F(a) and F(b).] But then, if p,(a,b)<§,/3, we
have

6, & &
Pix) <pi(%,0) +pi(aB) +i(bY) <+ 3+ 5 =,

From (3) we then have [since f(x)= F(x) and f(y)= F(y)]
pa[ F(xL.F(1)] <5 (6)
We conclude from (4), (5), and (6) that
p,[ F(a),F(b)]<e

provided only that p,(a,b)< /3. This shows that F is uniformly continuous on M,, and
the proof is complete.

From 6.8F we see that neither f nor g in 6.8E is uniformly continuous.

Exercises 6.8
1. Given € >0 find 8 >0 such that
|sinx —sina| < e (Jx—a|<8; —0 <a< ).

[Hint: Apply the theorem (or law) of the mean to f(x)=sinx.] Deduce that the sine
function is uniformly continuous on (— 0, o).
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. Suppose that f is a real-valued function on [a,b] and that the absolute value of the
slope of every secant line on the graph of f is < 1. Prove that f is uniformly
continuous on [a,b].

. Which of the following functions are uniformly continuous on the indicated domain?
@) f(x)=x3(0<x<1).

(b) f(x)=x>(0<x<00).
(©) f(x)=sinx? (0< x < ).
d) f(x)=1/(1+x% (0< x<o0).

. Let f be uniformly continuous real-valued function on (0, 1). Prove that lim,__ f(x)
exists.

. Suppose f is a continuous real-valued function on R' and that

Jlim £()=0= lim_ () ©

Prove that f is uniformly continuous on R'. [Hint: Use (*) and 6.8D.]
. Prove that every function from R, into a metric space is uniformly continuous.
. Let M be a metric space, x,€ M, and

f(x)=p(x,x4) (xeM).

Prove that f is uniformly continuous on M.
. Prove that a uniformly continuous function sends Cauchy sequences to Cauchy
sequences.

6.9 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 4, 5, AND 6.

I. A theory that allows infinite limits.

6.9A. We have by design allowed only finite values for limits of sequences of real
numbers. This is appropriate, we think, in an introduction to the subject in order not to
compound the difficulty of the limit concept.

There are, however, certain advantages to a theory which allows co and — oo as limits,
and we will indicate here how to proceed with this alternate approach. Since we have
already developed in detail the “theory of finite limits,” the exposition will not be long.
First we will define the set known as the extended real numbers. This set, denoted R*,
consists of all real numbers together with the symbols oo and — o0o. We postulate

a<oo (aER),
—w<a (aER),

so that the ordering of R is extended to R*.

EXERCISE: Let f(0)=1, f(—o0)=—1, and

f@=q3m (*ER),

and define

p(xy)=1f(x)=f)  (xyER¥).

Prove that p is a metric for R*.
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6.9B. We make the following definitions to extend addition and subtraction from R to
R*;
atoo=0+a=w (aER),
a+(—)=(—w)+a=—w (a€ER),

00 + 00 = 0,
(—0)+(—)=—ox,
—(-®)=00,

and
a—b=a+(-0) (a,bER™),
except that we do not define co — o0 or oo +(— o0). For multiplication we define
a(oo)=o00(a)=o0 (0<a< x),
a(—w)=(—o)a=—o0 (0<a< o),
a(oo)=(0)a=—o0 (—o0<a<0),
a(—o0)=(—w)a=o (—o0<a<0).
We do not define 0(c0), 0(— 0), ()0, or (— «)0.

EXERCISE: Show that addition and multiplication in R* are commutative and asso-
ciative. Does the distributive law

a(b+c)=ab+ac (a,b,c ER*)
hold provided that both sides are defined?

6.9C. Next we define limits. Let {s,}-, be a sequence of elements of R*.

If LER, we say that {s,}5_, has the limit L and write lim,_, s, = L if the condition
in 2.2A holds. Note that in this case s, can be infinite for only a finite number of n.

We say that {s,};, has the limit co and write lim,_, s, = oo if the condition in 2.4A
holds. In this case s, can be — oo for only a finite number of n. However, s, can be oo for
any number of n—possibly all n.

We treat — oo as a limit in similar fashion.

We avoid in this section the terminology convergent and divergent.

EXERCISE 1. Prove that every monotone sequence of elements of R* has a limit. (This
simple statement replaces 2.6B, 2.6D, and 2.6E.)

EXERCISE 2. Prove that the limit of a sum (of sequences in R*) is equal to the sum of
the limits, provided that the sum of the limits is defined. Do the same for products.

EXERCISE 3. Prove that lim,_ _p(n,00)=0, where p is the metric for R* defined in
6.9A. Note that according to 4.3C, this may be written as

n—o0 as n—oo.

EXERCISE'4. Let {s,}>_; be a sequence in R*. Show that {s,}7>_, has the limit s in R*
if and only if

nlirrc}o p(s,,s)=0.
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6.9D. Now we take up the supremum (sup) and infimum (inf) which play for R* the
role played by the least upper bound and greatest lower bound for R.

Let E be a nonempty subset of R*. If £ C R, and E is bounded above as in 1.7A, we
define

supE=Lu.b.E.
If o €E or if ECR, but E is not bounded above, we define
sup £ = o0.
Similarly, we define
infE=glb.E
if EC R and E is bounded below, and
infE=— o0
if —oc0 EFE or ECR, but E is not bounded below.
Thus supE and infE are defined for all nonempty subsets of R*. This leads to
definitions of lim sup and lim inf that are less complicated than those in 2.9.
Let {s,}5-, be a sequence of elements in R*. Let
M, =sup{s,,S,41."* " } (n=12,---)
so that { M, }_, is nonincreasing and hence has a limit. We define
lim sup s,= lim M,.
n—oo n—x
Thus in our treatment of limits in R*, there is no need to separate the definition into two
parts as in 2.9A and 2.9B. Notice also that lim sup,_, s, is actually the lim(it) of a
sup(remum). That is,
li{'n_)s(gp s, = lim [sup{s,Spsr- " }]-
Similarly, we define

lim inf s, = lim [inf(s,,s,, 5"~ }].

Thus just as in R, every sequence in R* has a lim sup and a lim inf.

EXERCISE 1. Let {s,} be a sequence in R*. Show that {s,} has a limit if and only if
lim inf,_ _s,=1im sup,_, s,.

EXERCISE 2. If lim sup,_, . s,= L € R*, show that {s,} has a subsequence whose limit
is L.

EXERCISE 3. Let {s,} be a sequence in R*. Then {s,} has a subsequence which has a
limit. (Compare with 2.9M.)

This ends our treatment of infinite limits.
In the remainder of the book (except in some of the additional exercises) we will
return to our usage as introduced in sections 2.1 through 2.12—namely,

lim s, must be finite,

n—oo

{s,} converges means {s,} has a limit,
{s,} diverges means {s,} does not converge.
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Il. Discontinuities of monotonic functions.

6.9E. It is convenient to introduce the notation f(c+) defined by
fle+)= lim+f(x)

provided that the one-sided limit exists. Similarly,
fle=)= lim_ f(x).

We see from 4.1 that if fis a nondecreasing function on [0, 1], then f(c+),f(c—) exist
for every c €(0,1) (as do f(0+) and f(1 —)). Thus if 0< ¢ < 1, then f will be continuous at
¢ if and only if

fle=)=f(c)=f(c+).
Now, clearly,
flc=)<f(c) and f(c)< f(c+)
since f is nondecreasing. Hence if f is not continuous at ¢, we must have f(c—)<f(c+).
In this case, the number

fle+)=f(e—)

is called the jump of f at ¢, and we say that f has a jump discontinuity at c. If f is not
continuous at 0, then the jump of f at 0 is f(0+)— f(0). Similarly, the jump of f at 1 (if
there is a jump) is f(1)—f(1—). The reason for the word “jump” is evident from the
graph of the following simple example:

(e<x<1).
Thus if a nondecreasing function f on [0,1] has a discontinuity at ¢ €J[0,1], this

discontinuity must be a jump discontinuity (in contrast to the kind of discontinuity that
the “highly oscillating” function 4 has at 0 where

h(x)=sin% 0<x<1,
h(0)=0).

It is, perhaps, unexpected that a nondecreasing function f on [0, 1] can have infinitely
many discontinuities. Consider the following:

f(x)=0  (0<x<1),
f(x)=3% (3<x<3),
fx)=3 (G<x<}),

and so on. We set f(1)=1.

EXERCISE: Show that for n=1,2,- - -, this function has a jump of 1/(2") at the point

1-1/(2").
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6.9F. The preceding example shows that a nondecreasing function on [0, 1] may have
countably many discontinuities. It may not have uncountably many.

THEOREM: Let f be a nondecreasing function on [0, 1]. Then f has at most countably
many discontinuities.

Begin the proof by asking how many discontinuities f can have where the jump is
greater than 1. How many can it have where the jump is greater than 1?

EXERCISE: Finish the proof.

6.9G. It is interesting to note that the set of points of discontinuity of a nondecreasing
function can be any countable set. For example, here is a nondecreasing function on
[0, 1] which is discontinuous at every rational in (0, 1).

Let r,r,,+ -+ be an enumeration of all the rationals in (0,1). For each n=1,2,---
define the function ¢, by

t,(x)=0 (0<x<r,)
L(x)= = (r<x<1),
n
so that ¢, has a jump of (1)/(n?) at the point r,. Let

f)= S (x)  (0<x<1)

n=1
EXERCISE: Prove that f is nondecreasing on [0, 1], and that f is discontinuous at every
r,. (It can also be proved that f is continuous at every irrational. We will take this up
after we study uniform covergence in Chapter 9.)

lll. Cluster points, isolated points, and discrete spaces.

6.9H. Let M be a metric space. Recall that if 4 ¢ M, we call the point x € M a cluster
point of A4 if every open ball about x contains a point of 4 distinct from x. It follows
that in any open ball about a cluster point x of A there must be infinitely many points of
A (why?).

Hence the point x €M is a cluster point of M if every open ball about x contains
infinitely many points of M. ‘

On the other hand, if the point x € M is not a cluster point of M, then there is an open
ball about x which contains no other point of M. In this case we say that x is an isolated
point of M.

So every point of a metric space is either a cluster point or an isolated point. For
example, if

N={1,3.4,"-}u{0)
with the absolute value metric, then 0 is the only cluster point of N—all other points are
isolated.

If x is an isolated point of the metric space M, then {x} is an open ball—hence an
open set. If M consists entirely of isolated points, then every one-point subset of M is
open—so every subset of M is open. We call such a metric space a discrete space.

For example, the space R, is discrete since, clearly, every point is isolated. Note,
however, that a metric space (M,p) can be discrete even though p is not the discrete
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metric (that is, the metric taking only the values 0 and 1). Indeed the space
{l’%9%9%9”' }’
with absolute value metric, is discrete.
In each of the following exercises, M is a metric space.

EXERCISE 1. Suppose () G is open whenever & is a family of open subsets of M.
GEYF
Prove that M is discrete.

EXERCISE 2. Suppose that every subset of M is either open or closed. Prove that M
has at most one cluster point.

EXERCISE 3. If M is infinite (that is, M has infinitely many points), prove that M
contains an open subset G such that G and G’ (the complement of G) are both infinite.

EXERCISE 4. If M is infinite, show that M has an infinite subset 4 which, with respect
to the metric for M, is a discrete space.

EXERCISE 5. Suppose that for every open subset G of M, the closure G of G is also
open . Prove that M is discrete.

MISCELLANEOUS EXERCISES

1. Let {M,p) be a metric space. Show that

1+p

is also a metric for M.
2. Show that every metric space is homeomorphxc to some bounded metric space.
3. Give an example of subsets 4, B of R such that none of the four sets 4N B, AN B,
AN B, AN B is equal to any of the others.
4. Show that there is a nonempty open subset of R? which cannot be written as a finite
or countable disjoint union of open balls in R2. (Thus theorem 5.4F fails in R?)
5. Let A be a subset of the metric space M. Prove that each of the following statements
implies the others.
(a) A4 is dense in M.
(b) Bla,rln A#Q for every r>0,aE M.
(c) AN G# g for every nonempty open subset G of M.
6. Let M be a metric space. We have defined the open ball B[a;r] as

B[a;r] ={xeM|p(a,x)<r}.
Define the closed ball B¢[a;r] as
B[a;r]={x€M|p(a,x)<r}.
(a) Show that B¢[a;r] is a closed set.

(b) Show by example that B[a;r] is not necessarily equal to B¢[a:r]. That is, the
closure of the open ball may not be equal to the closed ball.




10.

11

12.

13.

14.

15.

16.

17.

18.
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(c) Give an example of a metric space in which there is an open bal! that is a
closed set but is not a closed ball. (Use a subset of R? which contains (1,0,
{—=1,0), and an appropriate interval on the y axis.)

. Let M be a metric space which has a countable dense subset. If 4 C M, prove that 4

has a countable dense subset.

. Suppose f:R'-R!. Prove that f is continuous at a€ R' if and only if whenever

{x,} =1 converges to a, the sequence { f(x,)}>., has a subsequence converging to

f(a).

. Let M, M, be metric spaces and suppose f: M,—M,. Prove that f is continuous if

and only if
f(A)C TA)
for every A C M,.
Give an example of a continuous function f from a metric space M into a metric
space N such that
FA)E A
for some A C N.
Let 4 be a subset of the metric space M. Define
f(x)=p(x.4)  (xEM).
Prove that f is uniformly continuous on M.
Let A4 be a connected metric space with at least two points. Show that there exists a
continuous real-valued function on A that is not constant. Use this to prove that 4 is
uncountable.
A map of the state of Iowa falls on the ground (flat) somewhere within the state.
Prove that there is a point on the map that is directly above the corresponding point
on the ground.
Let f be a continuous function from [0, 1] into [0, 1]. Prove that f has a fixed point.
Let A be an infinite subset of the compact metric space M. If the space 4 is discrete,
prove that A is not closed in M.
Let M be a compact metric space and f: M— M. Assume

e[ f(x).f(»)]<p(x.y)  (x,y EM;xF#y).
Prove that there exists x € M such that f(x)=x. (Start by showing that p[x,f(x)]
attains a minimum on M.)
Let M be a compact metric space in which the closure of every open ball B[a;r] is
the closed ball B¢[a;r]. Prove that every open ball is connected.

SKETCH OF PROOF: Prove by contradiction. Suppose B= B[a;r] is not connected.
Then B=C U D where C and D are nonempty and open in B. We may assume
a€C. Let

f(x)=p(a,x) (x€B-C).

If glb. f(x)=s, there is a point d € D such that f(d)=s. The point 4 is a limit
xeEB-C
point of B[a;s]c C. Fill in the details and finish the proof.
Let M be a compact metric space. Suppose f: M— M is such that
p(x.p)<p[f(x).f(»)] (x.yEM).
Prove that f is onto and that

Cop(xy)=p[f(x).f(¥)] (xyEM).
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Thus f preserves distances. (Such an f is called an isometry.)

SKETCH OF PROOF: For x €M let x,=f(x),x,=f(x),***,X,41=S(x,),*++ . Simi-
larly, for y #x, let y,=f(»),y,=f(»;), and so on.
Use Theorem 6.5B to show that given e, there exists k € such that both

p(x,x,)<e and p(y,y,)<e.

Thus the range of f is dense in M. Next suppose that p[ f(x),f(»)]> p(x,y). Choose €
such that p[f(x),f(»)]>p(x,y)+2¢. Deduce a contradiction. Thus p[ f(x),f(»)]
=p(x,y) for all x,y € M. Finally, show that f is onto M.
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7.1 SETS OF MEASURE ZERO

In the next section we define the Riemann integral—the integral considered in
elementary calculus courses. We will see that a bounded function f has a Riemann
mtegral prov1ded f is continuous at “almost every” pomt The precise meaning of
“almost every” will be defined in terms of the following concept of set of measure zero.

If J is an interval of real numbers, we denote the length of J by |/|.

7.1A. DEFINITION. The subset E of R! is said to be of measure zero if for each € >0,
there exists a finite or countable number of open intervals /,,7,,... such that EcC uU,/,
and 2 ,|I,|<e.

Thus E is of measure zero if, given €¢>0, £ can be covered by a union of open
intervals whose lengths add up to be less than e. It is obvious, then, that a set consisting
of one point has measure zero.

The following result is very useful.

E,

n=1

7.1B. THEOREM. If each of the subsets E|, E,,... of R' is of measure zero, then U
is also of measure zero. ;

PROOF: Fix €>0. Since E, has measure zero, for each n €/ there exists a finite or
countable number of open intervals that cover E, and whose lengths add up to less than
€/2". The union of all such open intervals (for all n€&€I) then covers U,,_,E,,, and the
lengths of all these (countably many*) intervals add up to <e/2+¢/22+ =¢. Hence
U2, E, has measure zero.

Since one-point sets are of measure zero we deduce the following corollary.

7.1C. coroLLARY. Every countable subset of R! has measure zero.

* We are using 1.5F.

179
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In fact, there are even uncountable subsets of R! that have measure zero. In Chapter
11 we will be able to show that the Cantor set of 1.6D (which is uncountable) is of
measure zero. On the other hand, a nonempty open interval (no matter how small) is
never of measure zero. (See Exercise 3.)

We now make “almost every” precise.

7.1D. DEFINITION. A statement is said to hold at almost every point of [a,b] (or almost
everywhere in [a, b)) if the set of points of [a,b] at which the statement does not hold is
of measure zero.

Thus “f.is continuous at almost every point of [a,b]” means the same as “if E is the set
of points of [a,b] at which f is not continuous, then E is of measure zero.” We could also
say “f is continuous almost everywhere in [a,b].”

Exercises 7.1

1. If A is not of measure zero, if B C 4, and if B is of measure zero, prove that 4 — B is
not of measure zero.
2. If a<b, prove that [a,b] cannot be covered by a finite number of open intervals
whose lengths add up to less than b—a.
Use the Heine-Borel property of [a,b] to deduce that [a,b] is not of measure zero.
3. If a<b, prove that (a,b) is not of measure zero.
4. (a) Show that the set of all rational numbers is of measure zero.
(b) Show that the set of all irrational numbers is not of measure zero.
5. True or false? If f is continuous on [0, 1], and if g(x)=f(x) at almost every x €[0, 1],
then g is continuous almost everywhere in [0, 1].

7.2 DEFINITION OF THE RIEMANN INTEGRAL
Throughout the remainder of this chapter we consider only real-valued functions.

7.2A. DEFINITION. Let § be any bounded interval of real numbers, and let f be a
bounded (real-valued) function on §. We define M[f; $], m[f; $] and w[f; §] as

M[f;4]= l).(ué.l;. f(x),
m[f;?f]=g~le~‘;-f(x),
W[, $]=M[£;$]-m[f; $].

(Thus w[ f; §] is exactly the same as in definition 5.6B save that we now do not require
that ¢ be open.) If a is a point of §, we define w[ f;a] as
w[ fia]=glb.w[ f;J]

where the g.1.b. is taken over all open subintervals J of ¢ such that a €J.* (This is also
consistent with 5.6B.)

7.2B. DEFINITION. By a subdivision of the closed bounded interval [a,b] we mean a
finite subset {xg,x,,...,x,} of [a,b] such that a=xy<x,<-+- <x,=b. If 0 and 7 are
two subdivisions of [a,b], we say that 7 is a refinement of ¢ if 6 C 7. (That is, 7 is a

* Remember, for example, that [0,}) is an open subinterval of [0, 1].
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refinement of ¢ means that the subdivision 7 is obtained from the subdivision o by
adding more “points of subdivision.”)

If 6={xy,x},...,x,} is a subdivision of [a,b], then the closed intervals I,=[x,x,].1,
=[x,,%,),...,1,= [x,_,,x,] are called the component intervals of o.
7.2C. DEFINITION. Let f be a bounded function on the closed bounded interval [a,b]
and let o be any subdivision of [a,b]. We define U[f;o], called the upper sum for f
corresponding to o, as*

Ul fio]= é M[ £ 1] 1L

where I,,...,1, are the component intervals of ¢. Similarly, the lower sum L[f;q] is

defined as
n

L[ fio]= kzlm[f;lk]'lld-
Obviously, U[f;o0]> L[ f;0]. Note that if f is continuous and nonnegative valued on
[a,b], then U[f; o] is the sum of the areas of n rectangles each of which has one of the 7,
as base and whose height is equal to max,c, f(x). That is, U[f;0] is the sum of the
areas of the “circumscribed rectangles” as pictured in claculus texts. Similarly, L[ f; o] is
the sum of the areas of the “inscribed rectangles.” This geometric interpretation makes
the following result quite plausible (at least for continuous functions).

7.2D. LEMMA. Let f be a bounded function on [a,b]. Then every upper sum for f is
greater than or equal to every lower sum for f. That is, if o and 7 are any two
subdivisions of [a,b], then U] f;0]> L[ f; 7]

PROOF: We will show that if o* is any refinement of o, then
Ul fie]> U[ fi0*]. €))
It is enough to prove this in the case where o* is obtained from o by adding only one
point of subdivision. (For we can then apply induction.) Thus we may suppose that o has
component intervals I,,...,1,,...,I, and ¢* has component intervals I,,..., ¥, [}¥*,.... I,
where [, =I}U I}* and |I|=|I}|+|I}*|. Since I} Cl, we have M[f;I}]< M[f;1,].
Similarly, M [f; [}*]< M [ f; 1,]. Thus

U[fio*]= 2 M[LL]LI+M[ £ L) |+ M[ £ 13 ] 112
j=1
.Jl'aék

< Z M[ £ L)L+ M[ LI+ ) = U] fi0],

Jj=1
J#*k

+

which proves (1). Similarly, if 7* is any refinement of 7, it may be shown that
L[ fir]<L[fi7*]. (2)
But, since 6 U 7 is a refinement of both ¢ and 7, it follows from (1) and (2) that
Ul f;0]> U[ fiou]> L[ fiout]> L[ fi7].

This proves the lemma.

* For any bounded interval J,|J| denotes the length of J.
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7.2E. From the preceding lemma it follows that
glb.U[ fio] >lub.L[ f;0], (1

where the g.l.b. and lL.u.b. are both taken over all subdivisions ¢ of [a,b). For, if 7 is any
subdivision of [a, b], then the lemma shows that L[ f; 7] is a lower bound for the set of all
upper sums U[ f;o]. Hence

L[ fir]<glb.U[ f;o],

for every subdivision 7. But this says that g.l.b. U[ f; o] is an upper bound for the set of
all lower sums L[ f;7]. Hence

Lub. L[ f;7] <glb.U[ f;a],

which is equivalent to (1). The inequality (1) gives us an important relation between the
upper and lower integrals'of a function.

DEFINITION. Let f be a bounded function on the closed bounded interval [a,b] We
define

?f(x) dx,

called the upper integral of f over [a,b], as

T b
f f(x)dx=glb.U[ f;0],
a
where the g.l.b. is taken over all subdivisli)ons o of [a,b]. Similarly, we define
f f(x)dx,

called the lower integral of f over [a,b], as

fbf(x)dx=1.u.b.L[f;o].

For simplicity we sometimes denote the upper and lower integrals of f by

ff and fa"f.

Note that we are attaching no meaning to dx alone. From inequality (1) we see that

fabef. )

We will presently show that for continuous functions f (as well as some other functions)

fabf and ff

are equal. However, there exist f for which

b b
f f< f f.
Ja Ya
For example, if x is the characteristic function of the rational numbers in [0, 1], then, for

any interval J C[0, 1] -
M[x;J]=], m[x;J]=0.
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Hence, for any subdivision o we have U[x;o]=1,L[x;o]=0. It follows that

£x=0 but fx=l.

7.2F. perINITION. If fis a bounded function on the closed bounded interval [a,b], we
say that f is Riemann integrable on [a,b] if

[ "f=ff.

b b
In this case we define f f(x)dx (or f f) as
a a

b b b
J 1= f_ f= [
We denote by @R [a,b] the class of all functions f which are Riemann integrable on [a,b].

Thus the function x in 7.2E is not Riemann integrable on [0, 1]. On the other hand, it
is clear that any constant function on a closed bounded interval [a,b] is Riemann
integrable on [a,b]. In the next section we show exactly which functions belong to
@R [a,b]. The following theorem will be useful.

7.2G. THEOREM. Let f be a bounded function on the closed bounded interval [a,b].
Then f € R [a,b] if and only if, for each € >0, there exists a subdivision ¢ of [a,b] such
that

U[f;o]<L[f;o]+e. D

PROOF: Suppose first that given € >0 there exists o such that (1) holds. Then, since

b b
S r<ulse] and [Tr>L[f0],

we have

7f<fbf+e.

Since € was arbitrary, it follows that

INE L” f
and hence, by (2) of 7.2E, that
fbf= j;b i

a

This proves f € R [a,b].
Conversely, suppose f € R [a,b]. Then

._._; b
[ = 10Ul fio)=tub.L[fir)= ['f
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Given € >0 we may (by definition of g.l.b.) choose a subdivision ¢ such that

b €
fa f+5 > U[ fio]:

Similarly, we may choose a subdivision 7 such that

b, €
| =5 <Llh7)

Hence,
L[f;7]+§>U[f;o}—§.
By (1) and (2) of 7.2D we then have
L[ fiour]+3>Ulfiour]= 3.

This is equivalent to (1) (with 6 U 7 in place of o).

FExercises 7.2

1.

Let f(x)=x (0<x<1). Let o be the subdivision {0,%,%,1} of [0,1]. Compute U
[f;o] and L[f;a].

. For each n€1 let g, be the subdivision {0,1/n,2/n,...,n/n} of [0,1]. Compute

lim U[ f;0,]

n—oo

for the function f of the preceding exercise.

. For ¢, as in the preceding exercise, compute

lim L[ f;0,]

for the function f(x)=x2 (0< x < 1). [You will need the formula
n(n+1)(2n+1)

12422432+ .- 4+ n? 3

(nel).]

LI fERI0,1), if 0,={0,1/n,2/n,...,n/n}, and if

lim U[ f;0,]= lim L[ fi0,]=4,

n— oo

1
prove that f f(x)dx=A.
0

. For f(x)=sinx 0<x<7/2)and 6,={0,7/2n,27 /2n,...,n7/2n} compute U[ f;0,].

Use the identity from 3.8D (with x =x/2n) to show that
) 7/4n T T, T
Ulfiea]= sin (7 /4n) [cos 4n COS( 2 + 4n )]
Then prove that

. w
nll)rgo U[ f;0,]=cos0—cos 3= 1.

. Let f be a continuous function on [a,b]. Fill in the details in the following proof that

fER [a,b].
(a) The function f is uniformly continuous on [a,b].
(b) Given €>0 there exists § >0 such that

S —fDI<3S  (x=yI<:xyE[ab)).
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(c) For this €>0 there exists a subdivision o of [a,b] such that, if [, is any
component interval of o, then

M[ fiL]=m[ il ] <3

(d) For this o,
U[f;o] —L[f;o] <.
(e) Therefore f€ R [a,b).

7. If fis continuous on [0, 1], if 6,={0,1/n,2/n,...,n/n}, and if x} is any point in the
interval [(k—1)/n,k/n] (k=1,...,n), show that

L[ o)<t S e <ufa,).
k=1

Then show that

1 “ oo [
i, o 3 S(x2) fo s

n—o n

(This result is used many times in elementary calculus.) (Hint: Use the uniform
continuity of f to show that

U[f;o,,]—L[f;o,,]<£
for large n. Conclude that
1
Ul f;0,]— <
[fi0.]- [ S<e

for large n and hence that

lim U[f;a"]=f0'f.

n—oo

Similarly, show
lim L[ f f ] f. )
;0,]= .
n—oo [ ] 0

8. If f is continuous on [0, 1], prove that

9. Evaluate the following limits.

@ () () e+ (3]

(b) lim -l—(sinz+singz+~~+sinﬂ).
n—oo n n n n

(C) lim ':;(63/"+e6/"+... +€3"/"),

n—oo

10. Prove that faf=0 for any function f on the “interval” [a,a].
a
11. True or false? If f € R [a,b], then

[ 1yax= [ ryau= [ 1(s)de.
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7.3. EXISTENCE OF THE RIEMANN INTEGRAL

7.3A. THEOREM. Let f be a bounded function on the closed bounded interval [a,b].
Then f € R [a,b] if and only if f is continuous at almost every point in [a,b].

PROOF: Suppose first that f € R [a,b]. We wish to show that the set E of points in
[a,b] at which f is not continuous is of measure zero. Now, by 5.6C, x € E if and only if
[ f;x]>0. Hence, E= U ?_,E,, where E,, is the set of all x €[a,b] such that [ f;x]>
1/m. To prove that E is of measure zero it is sufficient, by 7.1B, to show that each E,, is
of measure zero. This we will now do.

Fix m. Since f € R [a,b], given € >0 there exists by 7.2G a subdivision ¢ of [a,b] such
that U[f;6]— L[ f;0]<€/2m. Thus if I,,...,I, are the (closed) component intervals of o,
we have

kglw[f;lk].|1k|= EnM[ﬂIkHL"— Elm[f; LT|L|=U[ f;e]—- L[ f;0],
and hence,
Z o[ ALY Il <5,, ()

Now E, = EX U E** where E? is the set of points of E,, that are points of the subdivision
o, and E}*=E— E}. Obviously, EXCJ,U - UJ, where the J; are open subintervals
such that |J,|+--- +|J,|<e/2 (since there are only a finite number of points of
subdivsion). But if x& E**, then x is an interior point of some /.. Hence, «[f;I,]

m ?

> o[ f; x]>1/m. If we denote by
AR A

r

those of the component intervals of o that contain a point of EX* (in their interior), we
have

%(MH L) <[ il [ M|+ e[ £l ],

Hence, by (1), 1 ¢
e+ L) <5 -

€
[+ 411, <5

Since EX* is covered by the interiors of Lise oIy, and since E¥ is covered by Jpseeesdp it

follows that E,, = E}U E}X* is of measure zero, which is what we wished to show.
To prove the converse we need a lemma.

LEMMA. If w[f;x]<a for each x in a closed bounded interval J, then there is a
subdivision 7 of J such that

Ul fir]— L[ fim]<alJ|. (2)

PROOF: For each x€&J there is an open subinterval /, containing x such that
@[ f; I }1<a. Since J is compact, a finite number of these I, will cover J (by 6.5G). Let 7
be the set of end points of these /. If I},1,,...,I, are the component intervals of 7, we
have o[ f; [, ]<a(k=1,...,n), and (2) follows easily.
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Now let us assume that f is continuous at almost every point of [a,b]. We wish to show
that f € R [a,b]. Given € >0 choose m € I such that (b—a)/m<e/2.1f E,, is defined as
in the first part of the proof, then, by hypothesis, E, is of measure zero. Hence,
E,c U I, where each I, is an open subinterval of [a,b] and

o0

A i AT

But E,, is closed in R' by 5.6D. Hence, E,, is a closed subset of [a,b] and is thus
compact. Therefore a finite number of the I,—say I, ,...,1, —cover E,. Now
[a.b]— (I, u---UL,)

is a union of closed intervals Jys-osJ,. That is,

[a.b]=1, U~ UL UJ U U,
Since no interval J,(i=1,...,p) contains a point of E,, there exists by the lemma a
subdivision 7; of J; such that U[f;7,]— L[ f;7,]1<|J;|/m. Now define the subdivision ¢ of

[a,b]as o=7;U -+ U, Then the component intervals of ¢ are the component intervals
of TheosT, together with I,,....1,. Hence,

U o)~ L[ fo]= 3 {U[f:n]—L[mHé (M[£1,]=m[ L)1,

i=1

1 <& SR
< S+ o[ AT}

=1
k

+o[ fi[a,b]] 2| |7,)

Jm=

<

b—a
m

€

<§+w[f; [a,b]]'m=€.

By 7.2G we have f€ R [a,b), and the proof is complete.

Exercises 7.3

1. Which of the following functions f are in R.[0, 1]?
(a) The characteristic function of the set {0, {5, &, 3%5,-.-,1}-
(b) f(x=sin(1/x) 0<x<,
f(0)=17.
(c) The function f of exercise 10, Section 5.3.
(d) The characteristic function of a set £ C[0, 1] such that E and [0,1]— £ are both
dense in [0, 1].
2. Compute o[ f; x] for all x €[0, 1] for each of the functions f of the preceding exercise.
If f& R [a,b], prove that | f|€ R [a,b].
4, True or false? If f€ R [a,b] and if f(x)=g(x) except for a countable number of
points x €[a,b], then g€ R [a,b)].
5. True or false? If f& R [a,b], and if f(x)=g(x) except for a finite number of points
x E[a,b), then g€ R [a,b).

(9%)

* We may assume that o[ f.[«.b]]>0
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7.4 PROPERTIES OF THE RIEMANN INTEGRAL

All the results in this section are used in proving fundamental calculus theorems as
well as in the solution of standard calculus problems. The reader should interpret

b
geometrically each of these results by thinking of f f (for continuous nonnegative-

valued f) as the area under the curve y = f(x) from x=a to x=5.

7.4A. THEOREM. If f€ R [a,b] and a<c<b, then f€ R[a,c],* f€ R[c,b], and
b c b
[r=[1+]"s

PROOF: By 7.3A the set E of points in [a,b] at which f is not continuous is of measure
zero. Obviously, then, EN[a,c] is of measure zero and so (by 7.3A) f&€ R [a,c].
Similarly, f € R [c,b].

If o is any subdivision of [a,c] and 7 is any subdivision of [c,b], then cUT is a
subdivision of [a,b] whose component intervals are those of ¢ together with those of 7.
Hence,

L[ f;o]+ L[ fir]=L[ fiouT]< f f

and so
b
L[ fio)+Lfir]<[ ¥

By taking the least upper bound on the left over all o (keeping 7 fixed for the moment)
we obtain

c b
ff+L[f;¢]<ff. (1)
a a
Now taking the least upper bound over all 7 we have
c b b
+ < .
Jore[a<f s
Going back to the original o and 7 we also have

Ulfie]+U[ fit]= U[f;oquff

so that
b
U fio]+U[fir]> [ f
Taking greatest lower bounds as in the first part of the proof we obtain
c b b
[r+[ =] 1 @)

The theorem follows from (1) and (2).

* More precisely, the restriction of f to [a,¢] is in R [a,c].
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Any freshman student will instinctively write
1 1,
f 3x%dx as 3f x?dx.
0 0
Here is the justification.

7.4B. THEOREM. If f€ @R [a,b] and A is any real number, then Af € R [a,b] and
b b
AM=A[ f.
J= s

PROOF: If A=0, the theorem is obvious. Suppose A>0. Since Af is continuous at
every point where f is continuous, it is clear that Af € R [a,b]. Since A>0, if J is any
interval contained in [a,b], then

MM T =AM[ f;J]

(verify), and so, for any subdivision o of [a,b],
U[A;0]=AU[ f;0].
It follows easily, on taking the g.L.b. of both sides (over all o) that

fabkf=)\j;bf (A>0). (1)

Hence, the theorem is proved for A>0.
Now for any J we also have

M[=fJ]==m[f;J]].

Hence,
b b
fa(—f)=g.lc;b.u[—f;o]=g.{;b.{—L[f;o]}=—1.uo.b.L[f;o]=—faf.

That is,

b b
[en==[" &)
If 4 <0, then A= — >0 and so, by (2) and (1) (since pf € R [a,b])
b b b
[ w=[ === [N=-A["f=u['s
This completes the proof.

From theorem 7.4C it follows that

foﬂ(\/m +x2)dx=.f:\/m dx+f0”x2dx.

7.4C. THEOREM. If fE€ R [a,b],g € R [a,b], then f+ g€ R [a,b] and
b b b
[U+o=[s+[&
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PROOF: By 7.3A, the sets E; and E, of points at which f and g, respectively, are not
continuous are both of measure zero. Hence, by 7.1B, the set E;U E, is of measure zero.
But if x€[a,b]—(E,;U E,), then f, g, and hence f+ g are continuous at x. Thus f+g is
continuous at almost every point in [a,b], and so f+g& R [a,b].

If J is any interval contained in [a,b], and if y €J, we have f(y)+g(y) < M[f;J]+
M[g;J). Hence, M[f+g;JIS M[f;J]1+ M][g;J).

For any subdivision o, then, we have

b
[ (f+8)<U[ f+g;0]<U[ fi0]+ U g0]. (1)
But given € >0 there is, by 7.2G, a subdivision o, of [a,b] such that
. € b €
U[f;al]<L[f,o,]+5<ja f+5.
Also, there is a subdivision o, of [a,b] such that
) € b€
U[g;02]<L[g,oz]+—2- <fa gty
If 6=0,U o,, then, by (1) of 7.2D,
b €
U[f;o]<fa f+5
b e
U[g;a]<vf:z g+§.

From (1) we then have

b b b
+g)< + +e.
fa (f+g) fa f fa g
Since € was arbitrary, this proves
b b b
+g)< + . 2
[uro<[ 1+ [ s @)

Since f and g were any Riemann integrable functions we can substitute — f, —g for f,g
in (2). Hence,

[r-a<fn+[-a.
Using 7.4B, we have

[oras-([rf9) g

Now multiply both sides of (3) by — 1. This reverses the inequality, and so

[+o>[ 1+ ["s 4)

The theorem follows from (2) and (4).

We leave the proof of the next result to the reader.
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74D. LEMMA. If f€ R [a,b] and if
f(x)>0

almost everywhere (a < x < b), then

fbf>0.

74E. cOROLLARY. If f€ R [a,bl,g€ R[a,b], and if
f(x)< g(x)

j;bf<fabg-

PROOF: By 7.4B and 7.4C the functions — f and g— f are Riemann integrable. Since
g(x)—f(x) > 0 almost everywhere, we have, by 7.4D, 7.4C, and 7.4B,

0< [ (g=N=[Ts+(=N]=[Te+ [(-N=["s=[1

This proves the corollary.

almost everywhere (a < x < b), then

74F. corOLLARY. If f€ R [a,b], then |f|€ R [a,b] and
b b
[A|< 1

PROOF: Since | f| will be continuous at every point where f is continuous (exercise 4
of Section 5.1), it is clear by 7.3A that | f| € R [a,b]. Now, since f(x) <|f(x)|=]|f|(x) for
all x €[a,b)], 7.4E implies

b b
IR (1)
Since —f(x) <|f(x)| for all x E[a,b], 7.4E implies
b b
= [ <11 )

The corollary follows from (1) and (2).

74G. If b<a, we define

fabf to be ~fbaf,

provided that f € R [b,a]. It is then not difficult to show that results such as

[ r+ fcbf= fabf

hold, regardless of the order of the points q, b, c.
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Exercises 7.4
1
1. Using only results from Sections 7.3 and 7.4 evaluate f (2x%=3x+5)dx.
0

3
2. Do the same for f (2x —3)dx.
1

3. Let J,,J,...,J, be open intervals in [a,b]. Show that x=x, ..., (the characteristic
function of J,U - - - UJ,) is in R [a,b]. Then show that

X(x) <x,(x)+x,(x)+ - +x,(x)  (a<x<b).
Deduce that

b
[ x <M1+ 417,
a

4. If f is continuous on [a,b] and if

F(x)= faxf(t)dt (a<x<b),

prove that F is continuous on [a,b].
5. (a) If 0< x <1, show that

(b) Prove that

1
2
l_ <f X dx<l
3V2  J, Vi+x 3
6. Prove that

27?2 <f’”/2 2x d <47r2

_— T X S
9 /6 SInX 9

7. If f is continuous on the closed bounded interval [a,b], if
f(x)>0 (a<x<b),

and if f(c)>0 for some ¢ €[a,b], prove that

fbf(x)dx>0.

8. If f is continuous on [a,b], if
f(x)>0 (a<x<b),
and if

f"f(x)dx=0,

prove that f is identically zero on [a,b].
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7.5 DERIVATIVES

As we saw in Section 7.3, the definition of integral has nothing to do with derivatives.
The fact that the integral
b
[s
a

can be evaluated by “anti-differentiating f and plugging in b and a” is a theorem and not
in any sense a definition. We now begin our development of the theory of derivatives,

which will ultimately yield this theorem.

7.5A. DEFINITION. Let f be a real-valued function on an interval J C R L If c€J, we say
that f has a derivative at ¢ if

im f(x)=f(¢) )

X—C X—C
exists.* If this limit exists, we denote it by f'(c).
It is clear that
 f(x)=f(c)
lim ——

x—c xX—C
means the same as
~ fleth)—f(c)
lim ——————.
h—0 h
Instead of “f has a derivative at ¢” we sometimes say, more simply, that “f'(c) exists.”

Thus if E is the set of points ¢ in J at which f'(c) exists (and if £# @), then f’ is itself a
real-valued function on E. It is entirely possible, of course, that £ is empty. We will soon
see that if f'(c) exists, then f is continuous at c¢. Thus if f is not continuous at any point in
J, then f cannot have a derivative at any point in J. It is also possible that f’(¢) does not
exist even though f is continuous at c¢. For example, if ’

f(x)=|x|‘ (—oo<x< ),

then
SO s,
x—0
while
JOZIO e k<o
x—0

*If J=[a,b] and c=a or c=b, the limit (1) is a one-sided limit and gives what is sometimes called a
one-sided derivative (see 4.1F). Thus if f is a real-valued function on [a,b], then

Fa)= lim f(x)-f(a)

a+ xX—a

while

e i JX)—S(B)
o= i S

It is then sometimes said that f has a right-hand derivative at a and a left-hand derivative at b.
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Hence,
S/ (0)
lim ——
x—0 x—0

does not exist. Thus f does not have a derivative at 0 even though f is continuous at 0.
(In Chapter 9 we show that there exists a function that is continuous at each point of
[0,1] but does not have a derivative at any point in [0, 1].)

The function
g(x)=x? (—oo<x<00)
has a derivative at each point of R ! For, if ceR" and x%c,
g(x)—g(c) _ x2—¢?
X—C - X—C

=x+c,

and thus

lim

X—=>C

g—(xx)__cﬂ=)lci_>mc(x+c)=2c‘.

Hence,
g'(c)=2c (-0 <c< ),
which probably is no surprise to anybody.

Now we prove that differentiability (having a derivative) at a point implies continuity
at that point.

7.5B. THEOREM. If the real-valued function f has a derivative at the point c € R, then f
is continuous at c.

PROOF: For x% ¢ we have

f —
f(x)—f(c>=[—(f;):—f@ Jce=o)

Since

i —
x—c X

im L—f(c) =f'(¢) and J1‘1_>rr£ (x—¢)=0,

theorem 4.1D implies
lim [ £(x) = f(€)]=f(¢)-0=0.
Hence, since f(x)=f(c)+[f(x)—f(c)] we have, by 4.1C,
lmf(x)=f(c)+0=f(c).
This proves the theorem.

We now record the familiar results on taking derivatives of sums, products, and so on.

7.5C. THEOREM. If f and g both have derivatives at c€ R, then so do f+g,f— g, fg,
and

(f+g)(e)=S(c)+&'(c),
(f=g)(e)=f(c)—8&'(c)
(f8) (c)=f"(c)g(c)+f(c)g'(¢).
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Furthermore, if g(c)#0, then f/g has a derivative at ¢ and
(l),(c)= g(c)f'(c)—f(c)g'(c)
8 [8(e)]

PROOF: We prove only the part concerning fg. If A= fg, then, for x#c,h(x)— h(c)
=f(x)g(x)=f(c)g(c)=f(x) g(x)—f(c) g(x)+f(c)g(x)—f(c)g(c), and so

h(x)—nh -

=4 SO L iy D72
Since

i OOy SO

and (by 7.5B) limx_,cg(x)=g(c), we see, using 4.1D and 4.1C, that 4 has a derivative at ¢

and
#(c)= lim M F(e)g(e)+f(c)g'(c),

X—C X —

which is what we wished to show.
Here is a statement and proof of the well-known “chain rule.”

7.5D THEOREM. Suppose g has a derivative at ¢ and that f has a derivative at g(c). Then
¢=fog has a derivative at ¢ and

¢'(c)=f[&(c)] & (c).

We first prove a lemma.

LEMMA. If f has a derivative at ¢, then there exists a function F such that
F is continuous at 0, €))
and
f(e+h)y=f(c)+hF(h) )
for all sufficiently small A.

Conversely, if there exists a function F satisfying (1) and (2), then f has a derivative at

c.
If such a function F exists, then F(0)=f"(c).

PROOF: Suppose f’(c) exists. Let

F(h)= ———————f(Hhh)_f(c) (h#0)

(provided ¢+ A is in the domain of f) and
F(0)=f"(c).
It is then clear that F satisfies (1) and (2). Moreover, F(0)=f’(c) by definition of F.
Conversely, suppose for some f that a function F exists which satisfies (1) and (2).
From (2) we have
fle+h)=f(c)

. =F(h)  (h#0).
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By (1), when 4 tends to zero the right side has the limit F(0). Hence, so does the left side.
This shows that f'(c) exists and that f'(c)= F(0), and so the proof of the lemma is
complete.

Now we can prove the chain rule.

PROOF OF THEOREM 7.5D. Since g has a derivative at ¢, the lemma shows the
existence of G such that G is continuous at 0, G (0)=g’(¢), and

g(c+h)=g(c)+hG(h)

for small A. Similarly, since f has a derivative at g(c), there exists F such that F is
continuous at 0, F(0)=f"[g(c)], and

fle(e)+k]=f[ g(c)]+kF (k) ®)

for small k.
Let

k=g(c+h)—g(c)=hG (h)

(which will be sufficiently small if 4 is). Then

fTe(e)+k]=fg(c+h)] 4)
and

kF (k)=hG (h)F[ hG (h)]. )
Substituting (4) and (5) into (3) we obtain

flg(c+h)]=1] g(c)]+hG (h)F[ hG (h)].
Since ¢ = fog this says
¢(c+h)=9(c)+hd(h) (6)

where ®(h)= G (h)F[hG (h)]. Now ® is continuous at 0 since F and G are continuous at
0. In view of (6) the lemma implies that ¢’(c) exists and that

¢'(c)=2(0)=F(0)G (0)=/"[ g(c)] &'(¢),
which is what we wished to prove.
The following result on the relationship between derivatives of inverse functions is

important in later applications. Remember that if f is a 1-1 function on [a,b], then
@[ f(x)]=x (a < x < b) where ¢ is the inverse function for f.

7.5E. THEOREM. Let f be a 1-1 real-valued function on an interval J. Let ¢ be the
inverse function for f. If f is continuous at ¢ €J, and if ¢ has a derivative at d=f(c) with
¢'(d)#0, then f'(c) exists and

ooy 1
PROOF: For h+#0 let k(h)=f(c+ h)— f(c). [Since fis 1-1, we know k(h)7#0 if h+0.]
Then d+ k(h)=f(c)+ k(h)=f(c+ h). Hence,

(p[d+k(h):l=<p[f(c+h)]=c+h.
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We have
fle+h)=f(c) [d+k(h)]-d k(h)
h T cth—c  g[d+k(h)]-o(d)
_ 1
© e[d+k(h)]-e(d)
k(h)

But lim,_ ok (k) =0 since, by hypothesis, f is continuous at ¢. Thus as 4 approaches 0, the
right side of (1) approaches the limit 1/¢’(d). Hence,
LSS
1 =
h—0 h o'(d)’
which is what we wished to prove.
For example, if f(x)=Vx (0< x <), then @(x)=x? (0< x<o0). By 7.5E we know
that f'(3) exists and

1
P(V3)

We have already shown that ¢/(x)=2x (0< x < o). Hence, f'(3)=1/2V3 . (This agrees
with the well-known formula f'(x)=1/2Vx (0< x<).)

f3)=

7.5F. In elementary calculus courses derivatives are usually introduced with a geomet-
ric interpretation. If f is a real-valued function on an interval J, then f defines a
graph—namely, the subset of R? consisting of all points {x,y) in R? such that x €J and
y=f(x). This curve is usually denoted simply by

y=f(x). Q)

The curve (1) is then said to have a tangent at ¢ €J if f has a derivative at c¢. The slope of
the tangent at ¢ is then defined to be f'(¢). The customary notation for the slope of the
tangent at ¢ is dy /dx|, ... That is,

D~ fe)

dx x=c

When f has a derivative at all points of J [that is, when (1) has a tangent at all points of
J] this is usually written simply as
d
= =1(%).
The dy /dx notation permits the results of the last two theorems to be put in a more
striking form.
For example, consider the chain rule which says (roughly) that if ¢ =gef, then

¢'(x)=g'[ f(x)]S (%) )

Now if y=f(x) is a curve in the x-y plane and if u=g(y) is a curve in the y-u plane,
then

)
T=re, G m=g[f0]
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But then u=g(y)=g[f(x)]=@(x) and so du/dx = ¢'(x). Hence, (2) can be written

This should give a motive for the use of the term “chain rule.”
Now consider 7.5E. This states roughly that if fis 1-1 and

y=f(x)
[so that x = ¢@(y)], then
v |
= 56 @
But f'(x)=dy/dx and ¢'(y)=dx/dy. Hence, (4) can be written
dy 1
priabrrypr 5)

Both (3) and (5) would be trivial if dx,dy,du were themselves well-defined quantities that
could be dealt with by the laws of algebra. However, we have not given any meaning to
dx,dy, and so on (and you will not find out in this text what they are). The fact that (3)
and (5) are true is itself a good reason for the dy /dx notation.

In subsequent sections the reader should keep in mind the geometric interpretation of
the sign of the derivative. If f'(¢) >0, the curve (1) is “ascending” at c; if f'(¢)<0, the
curve is “descending” at c; while if f'(c)=0, the curve has a horizontal tangent at c.

Also remember that if f'(c) exists, then the curve (1) is “smooth™ at x=c.

7.5G. Suppose f'(x) exists for every x in some interval J. If c€J and if

. S(x)=f(c)
lim —

X—C X—C

(M

exists, we say that f has a second derivative at ¢. We then denote the limit (1) by
f"(c)—that is,

f"(c)= lim S/

X—C X—C

Similarly, the nth derivative of f at ¢ is defined as

J0 ()= lim 2 MO MO

X—C X—C

provided that f®~1(x) exists for all x in an interval containing ¢ and provided that the
limit exists. From 7.5B it then follows that if f*™(c) exists, then f""~1 is continuous at c.

We assume that the reader is familiar with the geometric significance of the second
derivative f"—namely, that the graph

y=£f(x)

is concave up at those points where f”(x)>0, and concave down at those points where
f"(x)<0.
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Exercises 7.5

1.

2.

10.

Prove that the derivative of a constant function on [a,b] is the identically zero
function on [a,b].

If f(x) has a derivative at ¢, if bER', and if g(x)=5f(x) for all x in an interval
containing ¢, show that

g'(c)="5f"(¢).

. Find f’(x) by the chain rule if

(@) f(x)=sinx?  (—o0<x<o0).

() f(x)= x+\/x+\/; (0< x < 0).

. If nerl and

f(x)=x" (—oo<x< ),
use definition 7.5A to show that
f(x)=nx""" (—o<x< ).

. (a) If n is a negative integer and

f(x)=x" (—o<x<o0;x#0),
show that
f(x)=nx""" (=00 <x<o0;x7#0).

(b) If n is a nonzero rational number and
f(x)=x" (—o<x< ™),
show that
f(x)=nx""" (—o0<x< o).
(Hint: If n=p/gq, write f(x) as (x?)/7 so that [f(x)]?=x".)

. Suppose that f and g have derivatives of all orders at ¢ and that A= fg.

(a) Prove that
h"(c)=f"(c)g(c)+2f'(c)g'(c)+S(c)g"(¢)-
(b) More generally prove that, for any n€ 1/,

n

h(")(c)= 2 k!(nn—!- il f(k)(c) g("_'k)(c).

k=0

(This formula is known as the Leibniz rule.)

. If f is a function on [a,b] and f'(c¢) >0 where a < ¢ < b, prove that there is an x with

¢ < x < b such that f(x)> f(c).
Let

f(x)=x if xisrational,
f(x)=sinx if x isirrational.

Prove that f(0)=1.

. True or false? If fis a function on [a,b], if ¢ €[a,b], and if f'(c) >0, then f is strictly

increasing on some open subinterval of [a,b] containing c.
If f is a real-valued function on [a,b] and if f has a right-hand derivative at ¢ €[a,b],
prove that f is continuous on the right at c.
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7.6 ROLLE’S THEOREM

Maximum and minimum problems are a very important part of elementary calculus.
For our purposes, however, we need only the following fraction of maximum-minimum
theory.

7.6A. THEOREM. Let f be a continuous real-valued function on the closed bounded
interval [a,b]. If the maximum value for f is attained at ¢ where a<c<b, and if f'(c)
exists, then f'(¢)=0.

PROOF: Suppose the contrary—that is, suppose f'(c)#0. If f'(¢)>0, then
X)— C X)— C
tim 29I S-S
- X—C

xX—c X

and so 0

for 0<|x —¢| <8, where §, is a suitable positive number.* If x €(c,c + §,), then x —¢ >0
and hence, f(x)— f(c)>0. This contradicts the hypothesis that f attains a maximum at c.
If f'(¢) <0, then
f(x)—f(e)
—<
x—c
for 0<|x—¢|<8,. If xE(c—8,,¢), then x—c<0 and hence, f(x)— f(c)>0, which is
again a contradiction. Hence, f'(c)=0.

0

An obvious modification of the proof will establish the following.

7.6B. THEOREM. Theorem 7.6A remains true with “maximum value” replaced by
“minimum value.”

If the curve
y=f(x) (a<x<b)

has its end points on the x-axis, and if the curve is smooth, it is intuitively clear that at
some point on the curve there will be a horizontal tangent. This result, made precise, is
called Rolle’s theorem, which we need in our drive toward the fundamental theorem of
calculus.

7.6C. ROLLE’S THEOREM. Let f be a continuous real-valued function on the closed
bounded interval [a,b], with f(a)=f(b)=0. If f'(x) exists for all x in (a,b), then there is
some point ¢ €(a,b) where f'(¢)=0.

PROOF: If fis identically zero on [a, b], the conclusion is obvious. If f(x) >0 for some
x €(a,b), the maximum value of f on [a,b] (remember f attains a maximum value at
some point of [a,b] by 6.6G) will not be attained at a or b since f(a)=f(b)=0. Hence, f
will attain its maximum value at some ¢ €(a,b) and the theorem follows from 7.6A. If
f(x)<0 for some x in (a,b), the theorem follows from 7.6B. This completes the proof.

We wish to emphasize the fact that the proof of Rolle’s theorem depends on the
theorem that a continuous function on a closed bounded interval attains a maximum
and a minimum value.

* See exercise 14 of Section 4.1.
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Note that in 7.6C we do not require that f’ exist on [a,b] but only on (a,b). Thus if
f(x)=V1-x? (—1<x<1),

then f obeys the hypotheses of 7.6C with a= —1,b=1. [Here f'(x)=—x/V1—x? for
—1< x <1, while f does not have a derivative at — 1 or 1.] For this f we see that the ¢ in
7.6C can be taken as 0. That is, f'(c)=f'(0)=0.

It is also important to observe that the hypotheses of 7.6C cannot be weakened. For
example, if

g(x)=1—|x| (—1<x<1),

then g(—1)=g(1)=0 and g is continuous on [— 1, 1]. Also, g'(x) exists for all x in (—1,1)
except x=0. Thus g obeys all the hypotheses of 7.6 except that g fails to have a
derivative at 0. For this g there is no ¢ in (— 1, 1) for which g’(¢)=0. This shows that the
conclusion of Rolle’s theorem need not hold if we weaken the last hypothesis.

7.6D. Using the techniques involved in the proof of Rolle’s theorem we can prove a
very interesting property of derivatives.
First note that if f is defined by

F(x)=x7sin ;15 (x#0),

f(0)=0,

then f has a derivative at each point of (— 0, ). For, by theorems 7.5D and 7.5C we
have*

f’(x)=—cos%+2xsin% (x#0). (M

To show that f'(0) exists we have, for x#0,

f(x)=f(0)
T x—0 Sy
f(x)—£(0

‘ (xx)—o() <lxl,

and it follows that
x)—f(0
O ORI
x—0 x—0
Thus

f(0)=0.
We have shown that f'(x) exists for all x. But note that f’ is not continuous at 0. For,
because of the cos(1/x) term in (1), lim,_,f'(x) does not exist. This example shows that

a function can have a derivative at each point of an interval but that the derivative
(function) need not be continuous on the interval.

* In Chapter 8 we prove that if y =sinx, then dy /dx =cosx.
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Nevertheless, derivatives share one important property with continuous functions.
Namely, if f'(x) exists for all x in [a,b], then the image of [a,b] under f* must be
connected, even though f’ may not be continuous. (Compare the following theorem with
6.2E.)

7.6E. THEOREM. If f has a derivative at every point of [a,b], then f* takes on every value
between f’'(a) and f'(b).

PROOF: It is sufficient to consider the case in which f'(a) <f'(b). Then if f'(a)<y
< f'(b), we must show that there exists ¢ €(a,b) such that f'(c)=1vy. Let

g(x)=f(x)—yx  (a<x<b)
so that
g(x)=f(x)—y (a<x<b).

Then, since g'(x) exists for all x €[a,b], theorem 7.5B shows that g is continuous on
[a,b]. Hence, by 6.6G, g takes on a minimum value at some point ¢ E[a,b]. But
g'(a)=f'(a)—y<0 and so g cannot attain its minimum value at a (why?). Similarly,
since g'(b)=f'(b)—vy>0, g cannot attain its minimum value at b. Thus a<c<b.
Theorem 7.6B then shows that g’(¢)=0. Since g'(¢)=f"(c)—v, this proves f'(c)=4,
which is what we wished to show.

The property of f in 6.2E or f’ in 7.6E is called the Darboux property.

Exercises 7.6
1. Prove that there is no value of k such that the equation

x3=3x+k=0

has two distinct roots in [0, 1].
2. Which of the following functions obey the hypotheses of Rolle’s theorem over the

interval indicated?

(@) f(x)=sinx (0< x < 7).

(b) f(x)=Vx (x=1) (0<x<]1).

! 1 1
=sin— |- —<x<—;
(©) f(x) sin— ( o SX<o ,x#O),
f(©0)=0.

@) f(x)=x>*0<x<1).

3. Find a suitable point ¢ of Rolle’s theorem for
f(x)=(x—a)(b—x) (a<x<b).

4. Prove that if

a a, a,
+—++ +a,=0,
n+1 n 2 "

then the equation
apx"+ax" '+ +a,_\x+a,=0
has at least one root between 0 and 1. (Hint: Consider

agx"*! ax" a,_,x2

+ -+
n+1 n

S(x)=

+ a,,x.)
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S. Let
f(x)=0 (—-1<x<0),
f(x)=1 (0<x<1).

Is there a function g such that

g0)=f(x) (-1<x<1)

7.7 THE LAW OF THE MEAN

For a “smooth” curve

y=f(x) (a<x<b)
it looks evident that at some point ¢ €(a,b) the slope of the tangent f'(c) will be equal to
the slope of the chord joining the end points of the curve. That is, for some ¢ €(a,b),
oo TOI@
(€)= b—a

This result, made precise, is called the law of the mean (or mean-value theorem).

Note that Rolle’s theorem states exactly the same thing in the special case where
f(a)=f(b)=0. Thus the law of the mean is a “rotated” version of Rolle’s theorem. The
idea of the proof is to subtract from f the function g whose graph

y=g(x) (a<x<b)
is the chord joining the end points of f. [Thus

()~ f(a
£(x)= ﬂ>+il—il( ~a)

for a < x < b.] Since f— g then takes the value 0 at @ and b, we can apply Rolle’s theorem
to f—g. Here are the details.

7.7A. THEOREM (LAW OF THE MEAN). If f is a continuous function on the closed
bounded interval [a,b], and if f'(x) exists for all x in (a,b), then there exists ¢ in (a,b)
such that

f(b)y-f
o= 11D,
PROOF: Let & be defined as
f(b)—f(a)

h(x)=f(x)"f(a)_Ta—‘*( —a) (a<x<b).

Then h(a)=0=h(b), and h obeys the other hypotheses of Rolle’s theorem as well.
Hence, 4'(c)=0 for some ¢ €(a,b). But

O
Wey=1(e)- 201D,

which establishes the desired result.

An important application of the law of the mean is the following.
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7.7B. THEOREM. If f is a continuous real-valued function on the interval J, and if
S(x)>0 for all x in J except possibly the end points of J (if there are any), then f is
strictly increasing on J (and hence, f is 1-1).

PROOF: If a,bE€J with a<b, we have, by 7.7A,
f(b)=f(a)=1"(c)(b—a)
for some ¢ between a and b. But f'(c) >0 by hypothesis, and hence, f(b)— f(a) > 0. That
is, if a <b, then f(a) <f(b), which is what we wished to show.
A useful generalization of the law of the mean can be motivated by considering a
smooth curve in parametric reppesentation
x=g(t), y=f@) (a<t<Db).
The slope of the chord joining the end points of the curve is
f(b)—f(a)
g(b)—g(a)”
The slope of the tangent to the curve at t=c is f'(c)/g’(c). The generalized law of the

mean asserts that there will always be a value of ¢ in (a,b) for which the slope of the
chord is equal to the slope of the tangent at c. We now make this precise.

7.7C. THEOREM. Let f and g be continuous functions on the closed bounded interval
[a,b] with g(a)#* g(b). If both f and g have a derivative at each point of (a,b), and f'(¢)
and g’(¢) are not both equal to zero for any 1 & (a,b), then there exists a point ¢ €(a,b)
such that

f(e) _ J(b)-f(a)
g'(c) g(b)—g(a)’

PROOF: Let

J)-1
B =100~ @)= T D g()-8(@)]

Then h(a)=0, h(b)=0 and h obeys the other hypotheses of Rolle’s theorem. Hence,
h'(c)=0 for some ¢ E(a,b). That is,
f(b)—S(a)
4 c —_————_——— 4 =0.
AFORFORAY

If g’(¢) were zero, then f'(¢) would also be zero, contradicting our hypothesis. Hence,
g'(¢)#0, and the theorem follows.

Exercises 7.7

1. Which of the following functions obey the hypotheses of the law of the mean? For
those functions to which the law of the mean applies, calculate a suitable point c.

@ f()=—27  (0<x<2). ) f(x)=Ax+B  (a<x<b).

(b)f(x)=x"—_—l (2< x<4). @ f(x)=1-x¥* (=1<x<1).
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2. Calculate a value of ¢ for which
f()—f(a)  f(e)
g(b)—zg(a) g'(c)
for each of the following pairs of functions.
(@) f(x)=x,g(x)=x> (0<x<1).
(b) f(x)=sinx,g(x)=cosx (—7/2< x<0).
3. Show that if f'(x) and g’(x) exist for all x in [a,b], and g'(x)#0 (a < x < b), then f and
g satisfy the hypotheses of 7.7C.
4. If f'(x)=0 for all x in (a,b), prove that f is constant on (a,b).
5. If f is continuous on [a, b], if f'(x) exists for a < x < b, and if lim,_,_ f'(x)= A, prove
that the (left-hand) derivative f'(b) exists and is equal to 4.
6. Suppose

f(x)>0 (a<x<b).

If @ is the inverse function for f, show that ¢ is continuous on [ f(a),f(b)].

7.8 FUNDAMENTAL THEOREMS OF CALCULUS

We begin by asking the following question. What must we know about a function f on
an interval [a,b] in order to be sure that f is the derivative of some function F on [a,b]?
We see from 7.6E that even such a relatively “nice” function as that given by

f(x)=0 (-1<x<0),
f(x)=1 (0<x<1)

is not the derivative of any function on [—1,1]. What we now show is that if f is
continuous on [a, b], then there will exist a function F on [a, b] such that F’(x)=f(x) for
all x €[a,b]. [Thus continuity on [a,b] is a sufficient condition for a function to be a
derivative on [a,b]. Note, however, that continuity is not a necessary condition. For we
showed in Section 7.6 that the derivative of ¢ is not continuous, where

o(x) =xzsinji‘ (x#0),
¢(0)=0.]

7.8A. THEOREM. If fis continuous on the closed bounded interval [a,b], and if
F(x)= [ f(ndt  (a<x<b),
then F'(x)=f(x) (a< x<b).
PROOF: For any fixed x €[a,b] we have, if 170 and x+ h E[a,b],
x+h x
F(x+h)—F(x)=f f(t)dt—f f(t)tr.

a a

Then, by 7.4A,

x+h
F(x+h)— F(x)=f f(t)dt. (1)
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Since f is continuous on the closed bounded interval [x,x + h], by 6.6G there are points
of [x,x+ h] at which f attains a maximum value M and a minimum value m. (We are
tacitly assuming that 4 is positive. If # <0, we would write [x + A, x] instead of [x,x + A],
and make similar adjustments in the details to follow.) That is,

m< f()< M (x<t<x+h),
and f(t;)=m,f(t,)= M for some t,,t, in [x,x + h]. By 7.4E we then have

fx+hmdt<fx+hf(t)dt<fx+tht,

x+h
mh <f f(t)dt < Mh,
X

and finally
m<O< M,
where

x+h
6= %fx F(t)dr.

x+h
(How do we know that f mdt= mh?)

By 6.2D there must be a point c(k) in [x,x+ h] such that f[c(h)]=0. Thus we have
shown that if £ >0, there exists c(k) in [x,x + k] such that

fem)=4 [ s

From (1) we then have
F(x+h)—F(x)
= fle(n)]. @)
But, clearly, lim,,_,yc(h)= x [since x < c(h) < x + h). Thus as h—0, the right side of (2) has
the limit f(x), since f is continuous at x. Hence, the left side of (2) approaches f(x) as
h—0, and we have

F h)—F
P = fim T i,

which is what we wished to show.

Theorem 7.8A is the first result we have encountered that links the concepts of integral
and derivative. It shows not only that when f is continuous there will be a function F
such that F'= f, but also that F can be expressed in terms of an integral. Theorem 7.8A
is sometimes called the fundamental theorem of calculus. However, since theorem 7.8E
also sometimes goes by that name we will call 7.8A the first fundamental theorem of
calculus.

We can improve 7.8A by assuming only the Riemann integrability of f and assuming
the continuity of f at the point x. That is,

7.8B. THEOREM. If f€ R [a,b), if
F(x)= ["f(ndt  (a<x<b),

and if f is continuous at x,E[a,b], then F'(xq)=f(x,).
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PROOF: For h>0 let I, denote the interval [xy,x,+ h]. Then, with o[ f;7,] as in 7.2A
we have
f(xo)—w[f;lh] < f() < f(xo) o[ fi1,] (tel,).
Hence, by 74E,
Xo+h
h[f(xo)—w[f;lh]] <f ° f(t)dt<h[f(x0)+w[f;1,,]].
Xo
Dividing by # we have

F(xy+h)—F(x
Jxg) =] fily] < 2 C) < ol i) (1)

[Equation (1) can be established for 2 <0 in identical fashion.] But, since by hypothesis f
is continuous at x, we have

li ; 1, 1=0. 2
lim @[ f:1,] @
The theorem then follows from (1) and (2).

It should be clear that 7.8A is a consequence of 7.8B.

We now head toward the second fundamental theorem of calculus that justifies
evaluating an integral
b
[
a

by “anti-differentiating the integrand and plugging in a and b.” We first need two
theorems that are of vast importance.

7.8C THEOREM. If f'(x)=0 for every x in the closed bounded interval [a,b], then f is
constant on [a, b]—that is,

f(x)=C  (a<x<b)
for some C €R.

PROOF: For any x with a<x < b, theorem 7.5B shows that f is continuous on the
interval [a, x]. By the law of the mean 7.7A, there exists ¢ €(a,x) such that

_m®=ﬂ?:5®_

But, by hypothesis, f'(¢)=0. Thus f(x)=f(a) for all x in [a,b], and the theorem is
proved [with C= f(a)].

Here is an immediate consequence.

7.8D. THEOREM. If f'(x)=g’'(x) for all x in the closed bounded interval [a,b], then f—g
1s constant—that is,

f(x)=g(x)+C (a<x<b)
for some C € R.

PROOF: By 7.5C, (f—g)'(x)=f"(x)—g'(x) for all x in [a,b]. Hence, by the hypothesis,
(f—g)(x)=0 for all xE[a,b). The theorem follows from 7.8C.
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7.8E. THEOREM (SECOND FUNDAMENTAL THEOREM OF CALCULUS). If f is a continuous
function on the closed bounded interval [a,b], and if

P(x)=f(x) (a<x<b), (1)
then
fabf(x)dx=(l)(b)—q)(a).
PROOF: If
Fx)=["f(a,
then, by 7.8A,

F'(x)=f(x) (a<x<b). 2)
From (1) and (2) we see that F'(x)=®’(x) for all x in [a,b]. Hence, by 7.8D,
F(x)=®(x)+C (a<x<b)
for some C € R. Hence, F(b)— F(a)=[®(b)+ C]—[®(a)+ C]=d(b) — P(a). But

F(a)= [*f(r)dr=o.
Thus F(b)=®(b)— P(a). Since ’
b
F(b)=fa f(t)dr,

the theorem is proved.

A computation such as

373 )

is thus justified by 7.8E. For, if f(x)=x2 (1<x<2), then f is continuous on [I,2].
Moreover, if ®(x)=x3/3 (1< x<2), then ®(x)=f(x) (1< x <2). Hence, by 7.8E

2
J 1 =2@)-2(),
which is equivalent to (*).

7.8F. In elementary calculus, integrals are often evaluated by the method of substitu-
tion (or “change of variable”). For example, the integral

2 —_—
f V4—x? dx
0
can be reduced to

/2
4f / cos?udu
0

by letting x =2sinu so that, formally, dx =2cosudu.
In general, the integral

fABf(x)dx
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is equal to

[ o)) )

where @(a)=A4,p(b)= B, provided that f and ¢ satisfy certain conditions which we will
specify. However, we cannot prove this by saying “if x = ¢(u), then dx = ¢'(u)du” since
we have not defined dx, nor have we shown that the dx in dx/du has anything to do
with the dx in

B
f f(x)dx.
4
The fact that formal substitution of x = @(u),dx = ¢'(u)du in
B
f f(x)dx
A
yields an equal integral
b
[ o ()] (w)u
a

B
shows one reason why the f f(x)dx notation is a good one. But, let us repeat, this
A

substitution is not justified by anything we have as yet proved.

Before we come to the justification we should observe one thing. If ¢ is a continuous
function on the closed bounded interval [a,b], then the image of [a,b] under ¢ is
compact (by 6.6A) and connected (by 6.2D). Hence, the image ¢([a, b)) of [a,b] is itself a
closed bounded interval.

7.8G. THEOREM. Let ¢ be a real-valued function on the closed bounded interval [a,b]
such that ¢’ is continuous on [a,b]. Let A =g@(a), B=¢(b). Then, if f is continuous on
¢([a,b]), we have

B dre= b , d
J, Tedx= [ o] (x)du

PROOF: Since fis a continuous function on the closed bounded interval g([a,b]) there
is, by 7.8A, a function F such that

F(x)=f(x) x€q([ab]).
Let G (u)= F[@(u)] for a < u < b. Then, by the chain rule,
G'(u)=F'[ou)]e'(w)=fo()]e(w) (a<u<b).
Using 7.8E we have

b

[ #00]9' wdu= [ 6" (w)du= G (5)~ G (a)
Flo(b)]~ Flo(@)] = F(B)~ F(4)

fA *F(x)dx = fA ® f(x)ax.

This proves the theorem.
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For example, let f be any continuous function on [0, 1]. Then with ¢(u#)=sinu we have
¢(0)=0,¢(7/2)=1. Since ¢'(¥)=cosu is continuous (believe this for now) on [0,7 /2]
and since f is continuous on ¢([0,7/2])=[0, 1] we have, by 7.8G,

flf(x)dx=fﬂ/zf(sinu)cosudu.
0 0

Note also that ¢(7)=0, (97 /2)=1. Since ¢’ is continuous on [7,97 /2] we would also
have

f lf(x)dx = fgw/zf(sin u)cosu du,
0 7

provided that f is continuous on [—1,1] which is the image of [7,97 /2] under ¢. Thus
with f(x)=Vx ,
1 w
f \/;dx=f 2\/sinu cosudu
0 0
is true. However

| S 97 /2 .
f Vx dx=f Vsinu cosudu
0 7
is nonsense, since Vx is not defined for — 1< x <0. On the other hand, both statements
1 7/2 .
f xzdx=f 72 intucosudu
0 0
and
1 97/2 .
f xzdx=f "/ sinu cosudu
0 T

are valid and follow from 7.8G.

FExercises 7.8

I If
f(x)=j;x\/t+t6 dt (x>0),

find f'(2).
2. State all theorems on integration used in the following computation:

2 2 2 23
2__ — 2 _ = < _ _
fo(3x 5)dx 3f0xdx 5f0dx 3(3 o) 5(2-0).
3. If f is continuous on (— o0, 0) and if

F(x)=f0xf(t)dt (— o0 < x <o),

prove that
F'(x)=f(x) (—o<x< ).

4. If f is continuous on [a,b], if
f(x)>0 (a<x<b),
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and if
F(x)= ["fiyde  (a<x<b),

prove that F is strictly increasing on [a,b].
5. If f is continuous on [a,b], prove that there exists ¢ €(a,b) such that

fabf(x)dx=f(c)(b—a).

(Hint; Apply the law of the mean to F(x)= fxf(t)dt.) This theorem is sometimes
a

called the first mean-value theorem for integrals.
6. If f and g are continuous on [a,b)], and if g(r)>0 (a <t<b), prove there exists
¢ €(a,b) such that

b b
f f(x)g(x)dx=f(c)fa g(x)dx.

This theorem is sometimes called the second mean-value theorem for integrals. The
special case g=1 yields the preceding theorem.
7. If f' and g’ are continuous on [a,b], prove the familiar integration by parts formula:

b b
[ 18 (x)ax=1®)5(0)=f (@) 8(a)~ [ F(x)5(x)ax.

b
(Hint: Apply 1.8E to f (fg)’(x)dx.)
a
8. Prove that if f € R [a,b] and if
F'(x)=f(x) (a<x<b),
then

F(b)— F(a)=fabf(x)dx.

(This generalizes 7.8E. Hint: Given € >0 write

n

F(b)—F(a)= X [F(x)~F(x,_1)]

for a subdivision 6 ={xg,x,,...,x,} as in 7.2G. Then apply 7.7A.)

7.9 |IMPROPER INTEGRALS

The definition of the integral

j;oof(x)dx

does not follow from Section 7.2 since the interval [a,o0) is not bounded. Such an
integral is called an improper integral. The theory of this type of integral resembles to a
great extent the theory of infinite series. For this reason we do not give as many details
as usual.

We can define

fawf(x)dx
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as follows: If f € R [a,s] for every s> a, then
(o]
f f(x)dx
a
is defined to be the ordered pair {f, F) where
F(s)= [ f(x)dx  (a<s<oo).

The analogy with definition 3.1A is strong. The function f corresponds to the sequence
{a,}¥-, while the “partial integral”

s
F(s)=[f
a
corresponds to the partial sum s, =3% _,a,.

F(s)=A. In this case we write

§—> 00

We then say that foof is convergent to A4 if lim
0 [e o] ¢ oo . .
f f=A4.1f f f does not converge, we say that f f is divergent.
a a a

The integral foo(l/xz)dx is thus convergent. For if
1

F(s)=f Lax,
1 X

then F(s)=1-1/s and hence, lim,_, F(s)=1. Thus
f Lax=1.
X
On the other hand, the integral
o<}
i .
. Vx

diverges since

F(s)=jj——\/%—dx=2(\@ ~1).

If

j:of and foog

a

both converge, then so does f c>o( f*g), and
a

Lw(ftg)=[1wft£wg-

This may be proved by the method of 3.1C. Similarly, if fwf converges and ¢ € R, then

a

0
f ¢f converges and
a

o
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If feR[a,s] for every s>a and if fwlf(x)|dx converges, we say that fwf(x)dx
a a
converges absolutely. If
F(s)= [ 1/(x)ldx

and if F is bounded (above) on [a, o0), then lim,_,  F(s) exists by exercise 21 of Section

§—>00

4.1 and hence f ” f(x)dx converges absolutely.
a

If fwf(x)dx converges absolutely, if g€ R [a,s] for every s > a, and if

lg(x)|<If(x)]  (a<x<),
then f cxJg()c)dx converges absolutely. For
a

G(s)=j:|g(x)|dx<j:|f(x)|dx <fa°°|f(x)|dx.

0
Hence, G is bounded above on [a,0) and the absolute convergence of f g(x)dx
a
follows from the preceding paragraph. w
This last result allows us to prove that if f | f(x)|dx converges absolutely, then
a

0
f f(x)dx converges. For, since
a

0< f(x)+If (DI <AfX)]  (a<x<o0),

and since fw2|f(x)|dx converges (by assumption), it follows that

a

[T+l

converges absolutely. Since f(x)+ | f(x)| > 0 this means simply that
[T+l ax
a

o0
converges. But, since f | f(x)|dx converges, it follows (by subtraction) that
a

o0
f f(x)dx
a
itself converges, which is what we wished to show.
If f oof (x)dx converges but does not converge absolutely, we say that f °c>f (x)dx
a a
converges conditionally. A classical example of a conditionally convergent improper

integral is
o :
inx
f SIX
X

k.

o0
To show that f (sinx)/xdx converges, we have for any s >« (using integration by

k.

parts)

S o3 K3
f sinx ;1 _ coss+f cosx (1)
X . X2

L W s X
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Now

|cosx|
T <— (7 < x < ).
x x

Since f w(l /x?)dx converges (absolutely) it follows that f w(cosx)/ x2dx converges

m

absolutely and hence converges. Thus as s—>co all terms on the right of (1) approach
limits. Thus
s .
lim f SINX
s§—00 X
w
exists, which proves that f oo(sinx)/ xdx converges. [This also shows that

™
o0
f smxd _f cosxdx+l
X . x2 T

w

even though the second integral is absolutely convergent while the first integral (as we
will now show) is not.]

Now we show that f 00(sinx) /xdx does not converge absolutely. For any N €1 we

m

N'”|sinx|d
x X =

(n+1)m |smx| (n+ )
] ,,_lf x > 2 (n+l)7rf |sinx|dx

=1 2 n+1f |sin(u + nw)| du.

n—l

have

Now
sin(u + nm) = sinu cos nw + cos u sin nw = sinu cos n.
Since cosnm= =+ 1 this shows that |sin(u + n7)| = |sinu|. Hence, if 0 < u < =, then |sin(u+

nw)|=sinu. Thus
-1

N |sin x| I 2% 1
f" de - lfsmudu——-z n+1 =;k§2; (2)

n=1 n=1

By 3.2C the right side of (2) can be made as large as we please by taking N sufficiently
large. This and (2) show that

¥ |sin x| 4
X

lim
S—00

[o0)
cannot exist. Hence, f (sinx)/x dx does not converge absolutely.
m

The same method will prove the following important result.

7.9A. THEOREM. The improper integral

o0
f 1 dx
, X

diverges.
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PROOF: For any integer N we have

f L= 2

n=1

n+ll Nl
f d/E +1f ldx_n n+1 2%' (M)

=1

Again, since as N—oo the right side of (1) diverges to infinity, we see that

. 1
lim —dx
5§—00 1 X

does not exist. This proves the theorem.

We have just used the divergence of an infinite series to establish the divergence of an
improper integral. It is more usual to use an integral in the investigation of a series. This
is known as the integral test for series.

7.9B. THEOREM. Let f be a nonincreasing function on [1,00) such that f(x)>0 (1<x

< o0). Then Z%_, f(n) will converge if f (x)dx converges, and Z%_, f(n) will diverge
=1 n=1

0
if f f(x)dx diverges.
1

PROOF: For any n€ I we have
f()=f(x)=2f(n+1) (n<x<n+l)
since f is nonincreasing. Integrating from n to n+ 1 we then have
n+l n+1 n+1
f f(n)dx >f f(x)dx >f f(n+l)dx
or
n+1
f(n) >f f(x)dx>f(n+1).

Thus for N €I we have

S s > [T (x> S S+ )= 2 f (k). (1)

n=1 n=1

If fwf(x)dx converges to A4, then, by (1),
1

§ S0 < [ f(x)dx< 4

The partial sums of 27_, f (k) are thus bounded above. By 3.2A, the series Z%_, f(k).
converges and hence, 2 _ f(k) converges.

If f f(x)dx diverges, the divergence of £5_, f(n) may be established in similar
fashion, using the left-hand inequality in (1). This will complete the proof.
(There is an obvious modification of 7.9B for functions on [a, ©).)

For example we may reestablish the convergence of 2%_,(1/n?) by use of 7.9B. For,
if f(x)=1/x2 (1< x< ), then
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Since

flwf(x)dx= fw;%dx
1

is convergent, it follows that £5°_, f(n) converges.
If g(x)=1/(xlogx), then g is nonegative and nondecreasing on [3,00). Since G'(x)
= g(x) where G (x)=loglogx, then

fsg(x)dx= loglogs —loglog3,
3

n=1

and hence, f oog(x) diverges. It follows from 7.9B that ¥%_ [1/(nlogn)] diverges. (All
3
properties of logx used here are proved in the next chapter.)
7.9C. An integral of the form f ‘ f(x)dx may be treated by the same methods as those
= o0

used on integrals of the form fwf(x)dx. Thus we say that fa f(x)dx converges to A4 if
b . -

§—> 00

lim [ f(x)dx=4.

The change of variable x = —u will change a f ‘ problem into a f * problem. For
- o0 b
example, consider

For any s >2 we have

"2 21 S 1
f dx=f ——(—1)du=f du.
_ o 1=x o 1+u , 1+u

s

Since 1/(1+u)>1/2u for 2<u< 0, it follows from 7.9A that

s

lim du
s—o ) 1+u

-2 -2
does not exist. Hence, lim:_,wf 1/(1 = x)dx does not exist, which proves that f 1/

-Ss — o0
(1—x)dx does not converge. In this problem the divergence of

-2
1
f l—xdx

— o0

was deduced from the divergence of f co1 /(1 +u)du.
2

Integrals of the type discussed in this section are sometimes called improper integrals
of the first kind, in contrast to a second kind of improper integral, which we discuss in
the next section.

Exercises 7.9

1. Which of the following integrals are convergent?

C| |
(2) fl —7dx (b) fl 75 .
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=) 43x
(¢ dx.
© 1 1+x? ()jl 1+2x +12x*
€ ooxcosxdx. f
@ [ ® f T ,/2
o 1
——dXx.
)f, (1+x3)"°
. Show that
,/(; (1+x) (1+x)
. Show that
® 2
f a 2dx=—é-+%.
, (I+x)

[e o]
. True or false? If f is continuous on [l,00) and if f f(x)dx converges, then
1

im,_,  f(x)=0. (Answer: false.)

f f f(x)dx converges and if lim,_ f(x)= L, prove that L=0.
1

X—> 00

. Give an example of a continuous function f such that

f(x)>0 (1< x<o0),

and such that

§ f(n) converges

n=1
o

but
fwf(x)dx diverges.
1

. Give an example of a continuous function f such that
f(x)20  (1<x<o0)
and such that
0
f f(x)dx converges
1

but

> f(n)  diverges.

n=1
. Prove the following analogue of 3.7D. If f(x) >0 (1 < x < o0), if f is nonincreasing on
[1, 00), and if

f ” f(x)dx converges,
1

then lim,_ . xf(x)=0. (Hint: Use 3.7D.)

X—> 00



218 CALCULUS

9. Let f be a continuous function on [a, o0) such that, if
F(x)= [Tf(dt  (a<x<o0),
a

then F is bounded on [a, o). Let g be a function on [a, ) such that g’ is continuous
on [a,0),g'(#) <0 for a<t< o, and such that lim,_,  g(#)=0. Prove that

fwf(t) g(t)dt converges.

(Hint: Integrate by parts.) Compare with 3.8C.
10. Use the preceding exercise to show that

oo .

in

B converges.
; logt

®© .

11. Show that f cosu’du is convergent.
1

7.10 IMPROPER INTEGRALS (CONTINUED)

'
f—dx
b Vx

does not follow from Section 7.2 because the function f defined by

The definition of

f(x)=—\7_1x— (0<x<1)

is not bounded. Note, however, that f is bounded (and continuous) on [e, 1] for every
€ > 0. This suggests treating

1 1
f L 4 asthe lim f L
o \/; e—0+ e \/;
(which turns out to be equal to 2).
In general, if f € R [a+¢,b] for all € such that 0<e<b—a, but f & R [a,b], we define

b
f f(x)dx as the ordered pair {f, F) where

F(e)= fai(f(x)dx (0<e<b—a).

We say that f

a

b b b
f converges to 4 if lim,_,, F(e)=A. We say that f f diverges if ff
a a

b
does not converge. The integral f fis called an improper integral of the second kind.
a

Thus

I
—dx converges
o Vx
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while

3
L 2dx diverges.
, (x=1)

Properties such as absolute convergence and conditional convergence for improper
integrals of the second kind are defined in the same way as for improper integrals of the
first kind, and results on these properties carry over without difficulty to improper

b
integrals of the second kind. For example, if f f(x)dx is an absolutely convergent
a

b
improper integral, and if |g(x)| <|f(x)| (a<x <b), then f g(x)dx converges abso-
a
lutely. Thus

1,
sin
f X dx converges absolutely,
0

Vx
since
|sin x| 1
—_— (0<x<1).
Vx  Vx

It is often useful to convert an improper integral of the second kind by a change of
variable into an improper integral of the first kind. For example:

7.10A. THEOREM. The improper integral

1
f ld)c
0 X
diverges.

PROOF: For 0<e<1 let

|
F(c)—j; ;dx.
If (u)=1/u (1<u<1/e), then ¢'(u)= —1/u*du (1 <u<1/¢). Hence, by 7.8G,

1 — 1/€
F(e)= u =1 du= -1~du.
2 u
1/€ u 1

By 7.9A,
1/¢€
lim Lo
e—0+ 1 u

does not exist. Hence, lim,_,_ F(€) does not exist, and the theorem follows.

b
Thus far in this section we have treated only integrals f f where f is “bad” near a.
a

Corresponding theory holds in the case where f is “bad” near b. Thus if
fER [ a,b— e]
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for all € such that 0<e<b—a, and if
i b—e¢ d.
z—l>g1+ -/; f(X) *

b
exists, we again say that f f(x)dx is a convergent improper integral.
a

7.10B. THEOREM. The improper integral
1
f S dx
o V1—x2

PROOF: The integral is improper since 1/ V1—x2 is not bounded on [0,1]. We first
show that the improper integral

is convergent.

1
f L
o V 1—x .
is convergent (and hence, absolutely convergent, since V1—x >0). If 0<e< 1, we have
1—¢ 1
f ————dx=2-2Ve
0 l—x
and so

l—e¢

lim L =2

e—»0+ o V1—x
1
Hence, f 1/V1—x dx converges absolutely.
0
But, for 0< x <1,
1 _ 1 1 < 1 ‘
Vi-x2 Vi+x Vi-x Vi—-x

1 —
Hence, f 1/ V1-x? dx is absolutely convergent, which implies the desired conclusion.
0 i

7.10C. The integral

®
f —
0 x2 + \/.;

does not fall into any one of the categories we have thus far described since it is an
integral over (0,00) and 1/(x*>+ Vx ) is not bounded for x near 0. However, we will

o0 —_—
agree to call f 1/(x?+ Vx )dx a convergent improper integral since we can break it up

0

into

1 0
J,=f — 1 dx and J2=f S
o x>+ Vx . . x*+Vx

Now J, is a convergent integral of the second kind [since 1/(x2+ Vx)<1/Vx for



7.10 IMPROPER INTEGRALS, (CONTINUED) 221

0<x< 1] and J, is a convergent improper integral of the first kind [since 1/(x?+ Vx )

<1/x%for 1 < x< 0]

In general if an integral J can be broken up in this way into two or more improper
integrals J,,...,J, of the first or second kinds, and if each J, (k=1,...,n) is convergent,
we will say that J is a convergent improper integral. However, if one or more of the J, is
divergent, we will say that J is a divergent improper integral.

Thus f w(l /x?%)dx is a divergent improper integral since
0

' ®
f—zdx and f —;dx
o X 1 X

are improper integrals (of the second and first kinds, respectively) one of which is

divergent.
Similarly,
(o 2]
f _l_i"_i‘_z. dx
Ce 1+ x
is a divergent improper integral since both
f 1+ x - dx and f 1+ x
o 1+ x? 1+ x?2
are divergent improper integrals of the second kind. (Note (1+x)/(1+x%)>1/x for
I<x<0.)

7.10D. As we have just observed, the integral

(o]
f l+x2dx
_e It x

diverges since

T l4x
dx 1
j(; 1+ x2 M

does not approach a limit as s—oco. Similarly,
0

1+ x
dx 2
,[_S 1+ x2 @)

does not approach a limit as s—>00. However, the sum of (1) and (2) does approach a
limit as s—oc0. For the sum of (1) and (2) is
S
j f I+u
o 1+u?

0
f 1+x2dx+f 1+xdx
_sl+x o 0
=2f L du
o 1tu

and
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does exist. The sum of (1) and (2) may also be written f ’ (14 x)/(1+ x?)dx. Hence, we
L Y=s

limf 1_'-xdx
s=e ) 1+ x?

exists, even though f * (14 x)/(1+ x?)dx diverges. We call

have shown that

. .
lim

dx
s—00 _s1+x2

the Cauchy principal value of fw (1+x)/(1+ x?)dx.

In general, the Cauchy principal value of f * f(x)dx is defined to be
lim f " f(x)dx,

if this limit exists. We denote Cauchy principal value by C.P.V. Thus f * xdx diverges
—

but

C.P.V.f°° xdx= lim xdx— lim-0=0.

§—00 §—00

In an exercise you will be asked to show that if f f(x)dx converges to A, then
- o0
CP.V. f * f(x)dx=A also. As we have seen, however, the Cauchy principal value of
— o0

f ” f(x)dx may exist even if the interval diverges.
— 00

FExercises 7.10

. Which of the following improper integrals are convergent?

(a) f ——mdx (b) f 4—/3dx
—;‘d d aH;d

© 0 (16— x4’ " @ a-1 (x—a)'/? "
log(1

e o i

o 4—1/2
® J
2. Prove that if s<1, then
(b_a)l—:
T l-s

fb(xfa)_sdx=

Prove that if s > 1, then the integral diverges.



7.10 IMPROPER INTEGRALS, (CONTINUED) 223

. Prove that

® _s—1
==
0 X
is convergent if and only if 0<s <1.

. Let

F(x)= f-s%‘zldz (0< x < ).

Prove that the maximum value of F(x) is attained when x=a.
. For which of the following integrals does the Cauchy principal value exist?

(a) foo sintdt.
(b) fw |sin¢| dt.
© :

—o 1412
Do any of the above integrals converge?

5 dt.

. If f is continuous on (— o0, ) and if f * f(x)dx converges to 4, prove that
— o0

CPV. [ ® f(x)dx=

. If fis continuous on [0, 1], prove that
1

RACN

Ve

is convergent.
Then prove that

bf(x)
\/l—x2

Is the integral on the right improper?
. If f is “well behaved” on [a,b] except near the point ¢ E(a,b), we define the Cauchy

dx=fw/2f(sinu)du.
0

. . b
principal value of f fas
a

. c—e¢ b
611)1(')“_'_ (j; f+ fc.;.(f).
1
(a) Show that C.P.V. f Zdx=0.

(b) Show that C.P.V. f | | — dx does not exist.
1
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THE ELEMENTARY FUNCTIONS.
TAYLOR SERIES

We wish to define two major families of elementary functions. The first consists of the
exponential function, the log function, the hyperbolic functions sinh, cosh, tanh, and so
on, and the inverse hyperbolic functions sinh~! and tanh~'. The second family consists
of the trigonometric functions sin, cos, tan, and so on, and the inverse functions sin~!
and tan~'.

Our method of defining all these functions will probably be new to you (although, of
course, they turn out to be the same functions you worked with in calculus). The
method, although mercilessly analytic, has several advantages. One advantage is that the
definition of the functions in the second family parallels the definition of the functions in
the first. Second, we do not have to rely on any unverified theorems of geometry in our
definition of the trigonometric functions.

8.1 HYPERBOLIC FUNCTIONS

Let
o
U(x)=f —dt (—o0<x< ).
0 V' 1+ 12

U(—x)=-U(x) (—oo<x< o). (1

We first note that

For
o o
U(—x)=f ————dt=f ——— (= Ddu=—-U(x).
o Vi+s 0 Vl+(—u)2
Thus since U(x)>0 if x>0, we have U(x)<0 if x<0 and, for example, U(—4)=

— U (4). Next, since
1 1 1

>——— = —
Vi+d V22 Ve

224
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for 1< < oo, it follows from 7.9A that fool/\/l+t2 dt is divergent. Hence,
1

f oo1 /V 1+ % dt diverges, which shows that U is not bounded above. Equation (1) then
0

shows that U is not bounded below, either.
By 7.8A,
1

V 1+ x2

Hence, by 7.5B, U is continuous on (— o0, 00). Since U is bounded neither above nor
below, theorem 6.2D implies that the range of U must be (— o0, o). Also, (2) and 7.7B
show that U is 1-1 on (— o0, c0).

Thus U is a 1-1 continuous function from R' onto R!. If we denote the inverse
function of U by S, then S is a 1-1 function from R! onto R'. Moreover, since by 6.7B
the restriction of U to any compact interval is a homeomorphism on that interval, it
follows that S is continuous at each point of R' (see exercise 4 of Section 6.7).

If S(a)=0b, then U(b)=a. By 7.5E and (2),

S'(a)= U,‘(b) =VI+82.

U'(x)= (—oo<x< ). 2)

Since b= S (a) we thus have

S’(a)=\/l+[S(a)]2 (— oo <a< o). (3)

Hence, by differentiation,

S S@5@ “
1+[S(a)]?
But (3) and (4) then imply
S"(a)=S(a)  (—e<a<oo). 6

That is, S is its own second derivative. Finally define the function C by*

C(x)=\/1+[S(x)]2 (— o0 <x<o0). (6)

C(x)=S'(x) (—wo<x<o) (7)

Then, by (3),

Hence, by (5)
C'(x)=S(x) (=0 <x< ). t))

As you may have guessed by now, U usually goes by the name of sinh~!, S(x) is
usually denoted sinhx (the hyperbolic sine of x) and C(x) is usually denoted coshx (the
hyperbolic cosine of x). Thus (7) and (8) state the familiar fact that sinh and cosh are
derivatives of one another. From (6) we deduce the identity

cosh?x —sinh®x =1,

which in turn implies coshx > 1.
Since S=U~"! and

0
U(0)=f —L =0,
0 V' 1+ 2

* Remember \/ means nonnegative square root.
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we have S (0)=0. That is, sinh0=0. From (6) we see then that coshO=1.
Also, from (1) it follows that if U(x)=y, then U(—x)=—y. Hence, S(y)=x=
—(—x)=—S(—y). That is,

sinh(—y)= —sinhy (o <y< o). )
From (6) and (9) we conclude
cosh(—y)=coshy (—o<y< ). (10)

We have thus defined sinh ™!, sinh, cosh. The other hyperbolic functions can now be
defined in terms of these. For example, define tanhx as (sinhx)/(cosh x).

Exercises 8.1

1. Use only the results from Section 8.1 to work the following exercises.
(a) Prove that tanh(— x)= —tanhx(— o0 < x < 0).
(b) Prove that C"(x)=C(x) (— o0 <x < o0).
(c) Show that S is strictly increasing on (— o0, 00).
(d) Show that the graph of S is concave up for 0< x < oo and concave down for
—o0<x<0.
(e) Sketch the graph of S.
2. Prove that tanh is strictly increasing on (— o0, o).

8.2 THE EXPONENTIAL FUNCTION

We define the function E by

E(x)=C(x)+S(x) (—oo<x<o0). (1
Hence, E is continuous on (— o0, o0) and E(0)= C(0)+ S(0)=cosh0+sinh0=1+0=1.

Also, E(—x)=C(—x)+ S(— x) and so, by (9) and (10),
E(—x)=C(x)—S(x) (—oo<x< ). (12)
From (11) and (12) we have E(x)E(—x)=[C(x)P—[S(x)]*=cosh®x—sinh®x=1.
Hence, :
E(x)E(—x)=1 (—oo<x<00). (13)
This shows that £ (x) is never 0. Hence, by 6.2D, either E takes on only positive values

or E takes on only negative values. The latter alternative is not possible since E (0)=1.
Hence,

E(x)>0 (—oo<x< ). (14)

Since C(x)> 1 for all x we see from (11) that E(x)> S(x) for all x. Thus since S is not

bounded above, neither is E. That is, E takes on arbitrarily large positive values. By (13)

E must then take on arbitrarily small positive values. [For, by (13), if E(x)= M (large),

then E(—x)=1/M (small).] Theorem 6.2D and (14) then show that the range of E is
precisely (0, o).

From (11) we have E'(x)=C’(x)+ S'(x)= S (x)+ C(x). Thus
E’'(x)=E (x) (—oo<x< ). (15)
From (14) we thus see that £'(x)>0 for all x and hence, by 7.7B, that £ is 1-1 on

* In these sections only we continue the numbering of equations from one section into the next.
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(— 00, 0). It follows (exercise 4 of Section 6.7) that E is a homeomorphism of (— 00, o)
onto (0, o0).
Finally, let us prove that
E(x+a)=E(x)E(a) [a,xE(—o0,0)]. (16)

Fix a and let F(x)= E(x+ a)E(—x). Using 7.5C and 7.5D we have, on differentiation
with respect to x,
F'(x)=E(x+a)[—E'(—x)|+E'(x+a)E(—x) (=0 <x< ).
Using (15) we see that F'(x)=0 for all x. Hence, by 7.8C, F is constant. That is,
F (x)= F(0)= E (a) for all x. Thus
E(x+a)E(—x)=E/(a) (—oo<x<o0).
This and (13) prove (16).

It is, of course, customary to denote E (x) by e*. Thus ¢®= E(0)=1. Also, (15) states
the familiar fact that e* is its own derivative, while (16) states the fundamental rule of
exponents e**9=¢*.e%,

[To justify the use of the letter e here, we must show that ' as defined here is equal to
the e mentioned in (2) of 2.6C. We do this in the next section.]

Exercises 8.2

Use only results from Section 8.1 and 8.2 to work the following exercises.
1. (a) Prove lim,_,_ e*=0.
(b) Show that the graph of y =e* is concave up for all x.
(c) Sketch
y=e* (—o<x< o).
2. (a) Prove that e** =(e*)%(— o0 < x < ).
(b) Prove that e*/e’=e*77(— 00 <x,y <o0).

3. Show that E(x)+ E (=)
x)+E(—x
C(x)= —
[That is, coshx =(e*+ e ~*)/2.] Also, show that
sinh.x = £

4. Prove the following identities.
(a) sinh(x + y)=sinh x coshy + coshxsinhy.
(b) cosh(x +y)=coshxcoshy+sinhxsinhy.
(c) sinh2x =2sinhx coshx.
(d) cosh2x =cosh?x +sinh’x.
(e) 2[sinh(x/2)*=coshx—1.

5. (a) Show that

e*—e™”*
tanhx = ———— (—oo<x<o0).
e +e
(b) What is the range of tanh?
(c) If w is the inverse function for tanh, show that
1

1—x

w(x)= 5

for all x in the domain of w.
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8.3 THE LOGARITHMIC FUNCTION. DEFINITION OF x*

In the last section we found that E is a homeomorphism of (— o0, o) onto (0, c0). We
now define L to be the inverse function for E. Thus L is a homeomorphism of (0, o)
onto (— o0, o) and

L[E(x)]=x (—o<x<oo); E[L(x)]=x (0<x < o0). (17)
Since E(0)=1 we have L(1)=0. If L(x)=a and L(y)=b, then x= E(a),y = E (b).
Hence, by (16), xy = E(a)E (b)= E(a+b). Thus L(xy)=a+b=L(x)+ L(y). We have
shown
L(xy)=L(x)+L(y) [x,yE(O,oo)]. (18)
For y = x this shows L(x?)=2L(x). Similarly, L(x*)= L(x?%+ L(x)=3L(x). By induc-
tion we may show that

L(x")=nL(x) (0<x<oo;nel). (19)
If y=1/x, then from (18) we have 0= L(1)= L(x)+ L(1/x). Thus
L(%)=~L(x) (0< x < o0). (20)
Hence,
L(§)=L(x-—l—)=L(x)+ L(%)=L(x)—L(z).
That is,

L(§)=L(x)—L(z) [x,2€(0,00)]- (1)

If L(x)=y, then E(y)=x. By 7.5E we have L'(x)=1/FE’(y). But from (15) we have
1/E'(y)=1/E(y)=1/x. Thus

L'(x)= (0<x<o0). (22)

1
X
Hence, by 7.8E,

_ = (“ina= L
L(x)—L(1) flL(t)dz f]tdt.
Since L(1)=0 this shows
*1
L(x)=| —dt 0< x < 0). 23
(= [ fd O<x<o) (23)

From (22) we have L'(1)=1. That is,
L(1+h)—L(1) i L(1+h)

1= lim

h—0 h h—0 h
This implies
L(1+1/n
1= tim 2D nL(1+l).
n=co 1/n n—o0 n
By (19) we then have lim,_ . L[(1+1/n)"]=1. That is, the sequence

{L[a+1/m"T},,
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converges to 1. Since E is continuous at 1 this shows that

HILTOE{L[(1+711—)"}}=E(1)

. 1\"
)L‘&(”Z) —E(1). 24)
The left side of (24) is e as defined in (2) of 2.6C, while the right side is ' as defined in
Section 8.2. This shows we have been consistent in our use of the e notation.

When we use the customary notation L(x)=logx, (17) reads loge*=x (— o0 < x < 00)
and e!°t*=x (0< x < o0); (18) reads logxy =logx +logy; (20) reads log(1/x)= —logx,
and so on.

Note that we have not proved that logx?=alogx except when a is a positive integer
[equation (19)]. In fact we have not as yet defined x¢ for irrational a. (As we mentioned
in the introduction, we have always assumed that the definition of x“ for rational a is
known from algebra.)

If x is any positive number and a is any real number, we now define x“ as

x%= e, (25)
Thus logx®=1loge®'°®* and so, by (17),

logx?=alogx.

or, by (17),

Also note that if a=2 we have

x2=e210gx logx +logx logx, ,logx

=¢e =e e =X'X.
Thus even according to the definition (25), x? still means x times x. It may be shown
similarly that if a is any rational number, then x¢ as defined in (25) means the same as it

did in high-school algebra.

Exercises 8.3

Use only results from Sections 8.1, 8.2, and 8.3 to work the following exercises.
1. (a) Show that L is strictly increasing on (0, o).
(b) Show that the graph of
y=L(x) (0<x<o0)
is concave down.
(c) Sketch the curve
y=L(x) (0<x < ).
2. (a) If a#0, prove that

x == (0<x < ).
(b) If a#0, prove that

1Y

(_{)‘; x
y y
for all positive x and y.
3. (a) If a#0 and
f(x)=x° (0< x < 0),
prove that

f(x)=ax""  (0<x< o).



230 THE ELEMENTARY FUNCTIONS. TAYLOR SERIES

(b) If a>0 and
g(x)=a”* (—o<x< ),
prove that
g'(x)=a*loga (—o<x< o).
4. Prove that lim,_ (logx)/x=0. [Hint: First show that
log x 1 "i

" <—;— : /2 (x>l.)]
5. If a>0, prove that
lo

lim —2* =,

xX—00 X
6. Prove that for any M >0

lim X2 =0

o ex T

8.4 THE TRIGONOMETRIC FUNCTIONS

Before we begin our development of the trigonometric functions we would like to
point out that, in most elementary calculus texts, the proof that the derivative of the sine
function is the cosine function depends on the fact that lim,_(sinx)/x = 1. This limit is
usually established by a geometric argument that involves the formula for the area of a
sector of a circle. This formula is derived from the formula for the total area of a circle.
Hence, to find the derivative of the sine function by this approach we must know the
formula for the area of a circle. However, one of the chief early applications of the
trigonometric functions in a calculus course is the evaluation of

"\/2_ .2
4](;\/r x“ dx

—the integral that represents the area of a circle. Thus in this overall approach, the
“proof” that the area of a circle is #r? using trigonometric substitution is not valid, since
it involves knowing that the derivative of the sine is the cosine, while this in turn involves
knowing that the area of a circle is 7r.

In our development of the trigonometric functions we assume no formulae from
geometry. In fact, along with everything else, we define # itself (without geometry).

As we saw in 7.10B the improper integral

1
f;dt
0 Vi-¢2

converges. We define the real number 7 by

E’=fl‘*l—dt
2 J V-2

Thus if we define the function u by

u(x)=f;dt (—~1<x<1),
0 \/1—!2
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then u(1)=x/2,u(—1)=—x/2, and u is continuous on [—1,1]. Since l/\/l—t2 is
continuous for —1< <1, 7.8B implies

1
u(x)=—— (—1<x<1). (26)
V1-x?
Thus #'(x)>0 (— 1< x < 1) and hence, by 7.7B, u is a 1 — 1 function on [—1,1]. Thus by
6.7B, u is a homeomorphism of [—1,1] onto [—«/2,7/2]. It is easy to show that
u(x)=—u(—x) for —1< x<1. (Now draw a rough graph of u using information on u’
and u”.)

Let s denote the inverse function for u. Then s is a homeomorphism of [— 7 /2,7 /2]
onto [—1,1] with s(—7/2)=—1 s(w/2)—l Since u(0)=0 we also have s(0)=0. From
the fact that u(—y)= —u(y) for —1< y <1 it follows that s(— x)= —s(x) for —7/2< x
<7/2.1f —w/2<x<7w/2and s(x)=y, then —1<y<1and u(y)=x. By 7.5E and (26)

we have
s’(x)=ﬁ=\/l—y2 \VI-[s(0)] -

s'(x)=\1-[s(x)]? (~-721<x<127—). (27)

This shows that lim,_, /5 _s'(x)=lim,_, 5, 1= [s(x)]" =\1-[s(7/2)]* =0.Since
s(m/2)=s(x) |
m/2—x s'(e)
for some ¢ such that x <c¢ <7 /2, it then follows that
s(m/2)—s(x)
s(n/2)= lim ———— = Ilm s'(¢)=0.
(7/2) x—(m/2)— 7/2—x x—(m/2) - ()

Thus s'(7/2)=0 [where s’(7/2) denotes the left-hand derivative of s at #/2].* Similarly,
it may be shown that s'(— 7 /2)=0, where this time the right-hand derivative is involved.
This says that (27) holds also for x=7/2 and x= —« /2. That is,

That is,

s'(x)=\1-[s(x)]’ (—%<x<%). (27a)
We now extend s by defining s(y) for 7 /2<y <37 /2 by the equation
s(x+a)=—s(x) ( T <x )

2
(Note that if —7/2<x<7/2, then +7/2<x+7<37w/2.)
Then

S(xm=-s(x) (-F<x<3).

The right-hand derivative s'(7/2) will thus be equal to negative of the right derivative
s'(—m/2), which we have shown to be equal to 0. Since the left-hand derivative of s at
@ /2 is also equal to 0, this shows that s, as we have extended it to [— 7 /2,37 /2], has a
(two-sided) derivative at 7 /2 and s'(7/2)=0.

We can extend s to all of (— o0, 0) by simply requiring that

s(x+m)=—s(x) (—oo<x< o). (28)

* Here we could have used exercise 5 of Section 7.7.
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The extended function s will then have a (two-sided) derivative at all points of (— o0, o).
(This may easily be established by arguments similar to the one we have just given.)
From (28) and the fact that s(— x)= —s{x) for —7/2< x <7 /2 it is easy to show that
s(—x)= —s(x) for all real x. (Draw a rough graph of s.)

We now define the function ¢ on [— 7 /2,7 /2] by

c)=\I-[sx] (-F<x<3). (29)

Then ¢(0)=V1-0% =1,¢(7/2)=0=c(—7/2).
By (27a) we have ¢(x)=s'(x) for —7/2< x <7 /2. We then extend the function ¢ to
all of (— o0, ) by defining

c(x)=s'(x) (—oo<x<0). (30)
Since s(—x)= —s(x) we have —s'(—x)= —s'(x). That is, ¢(—x)=c(x) for all real x.
From (28) we have s'(x + 7)= — s'(x) for all x, and hence, ¢(x+ 7)= — ¢(x) for all x.
From (27a) we have
—s(x)s'(x
D ORI
1— [s(x):[2

for —7/2<x<w/2. By methods already used it may then be easily shown that
s"(x)= —s(x) for all x—that is,

s"(x)=—s(x) (—oo<x< ). (31)
Hence, from (30),
c'(x)=—s(x) (—oo<x< ),

and so
c"(x)=—c(x) (—oo<x< ™). (32)
From (29) we have
[c(x)]P+[s(x)]*=1 (—127-<x<-721). (33)
But then for any real y we have y+kw€[—7/2,7/2] for some integer k. Thus
s(y+km)y=—s[y+((k—Da]=--- =(= 1k s(p). Similarly, c(y + k7)=(—1)*c(y). Hence,
[sOF+[cP=[s(y +km)F +[c(y + km)PP=1 [by (33)]. Thus
[c)+[s()]P=1 (—0<y<x). (34)
We will now prove the identity
s(x+a)=s(x)c(a)+s(a)c(x) [a,xE(—0,0)]. (35)

Fix a. Let F(x)=s(x+ a)— s(x)c(a)—s(a)c(x). Then using (31) and (32) we have
F’(x)+ F(x)=0 (—o<x< ).
Thus
2F'(x)F"(x)+2F(x)F'(x)=0 (—oo<x< o).
Since 2F'F” +2FF’ is the derivative of (F’)*+ F?2, 7.8C implies
[F(x)?+[F(x)]*=const.=[ F/(0)*+[F(0)]?  (—o0<x< o).

But since s(0)=0,c(0)=1, it is easy to show that F(0)=0. Similarly, F’(0)=0.
Hence,
[F(x)P+[F(x)]*=0 (-0 <x< o).
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Thus both F and F’ are identically 0. That F is identically 0 proves (35), while F’
identically O proves

c(x+a)=c(x)c(a)—s(x)s(a) [a,xE(—o0,0)]. (36)
For a = x we then obtain the “double-angle” formulae
s(2x)=2s(x)c(x) and c(2x)=[c(x)]*—[s(x)]". 37

Needless to say, s is what is usually called the sine function while ¢ is the cosine
function. Just about every trigonometric identity that exists can be derived from those
we have already established [i.e., from (34)-(37)]. For example, from (37) we have

cos2x = cos®x —sin x.
Using (34) we have

cos2x=2cos>x—1,

costx = 1+cos2x
— -
Setting 2x = § we have
0 (1+cosf)1'/?
—_—— —
crl 2] L2200

the familiar “half-angle” farmula.
Now to prove two more important identities.
From (36) we have

cos(x + a)=cosxcosa —sinxsina.
Replacing a by — a, and using the relations cos(— a)=cosa, sin(— a) = —sina, we obtain
cos(x —a)=cosxcosa+sinxsina.
Thus
cos(x +a)— éos(x —a)= —2sinxsina.
For any real § and any k€1, let x=kf,a=10. Then
cos(k+3)8—cos(k—%)0 = —2sinkfsin 10.
We now write the preceding equation for each value of k from k=1 to k=n:
cos 30 —cos 160 = —2sinfsin 14 (k=1),
cos 30 —cos 30 = —2sin26sin 14 (k=2),

cos(n+3)0—cos(n—1%)0=—2sinnfsin30 (k=n).
Adding, we then have '
cos(n+1)0—cos 10 = —2sin ;0[sinf+sin20+ - - - +sinnf].
Hence,
cos 30 —cos(n+1%)0
sinf +sin2f+ - - - +sinnf= , (38)
2sinid

(@ not a multiple of 2).

[We used (38) in 3.8D.]
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A similar identity is vital in the study of Fourier series. We begin with (35)
sin(x + a) =sinx cosa +sina cos x.
Changing a to — a yields
sin(x — @) =sinx cosa —sina cosx.
Thus
sin(x + a) —sin(x — a) =2sinacos x.
With x =kf#,a= 36 we have
sin(k + 3)8 —sin(k — 3)0 =2sin 16 cos k.
Adding for k=0,1,...,n we obtain
sin(n+3)8 —sin(— 30 )=2sin 30 (cos08 +cosf + - - - +cosnf),
sin(n+ )0 +sin 36 =2sin 316 (14+cosf+ - - - +cosnf),
sin(n+5)0=2sin 30 (4 +cosf+ - -+ +cosnd),
and finally
sin(n+1)4

1 +cosf+--- +cosnf= Senld
Sim 3

(@ not a multiple of 27). (39)

Exercises 8.4

Use only the results from Section 8.4 to work the following exercises.
1. Prove that for any real x

(a) sin(w/2—x)=cosx.

(b) cos(7/2—x)=sinx.

[Hint: Use (35) and (36).]
2. Prove that for any real x

(a) cos2x=1—2sin’x.

(b) sin3x=3sinx—4sin’x.

(c) cos3x=cosx—4sin’xcosx.

3. Show that
(a) sin%=cosg—=%.
inT =cosT =1
(b) Sin g =cos 3 = 7.
(©) sin£=cosf—=13—.
3 6 2

[Hint: To prove (b) first show that sin(w/6)=cos(7/3). Then show that cos(w/3)
=1—2sin’(7 /6). Put these together.]
4. Show how the equation

sin(x +27)=sinx (—oo<x< )
follows from (28). Then show that
cos(x +2w)=cosx (—oo<x< ).

5. If x is not an odd multiple of = /2, define
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and

S€Cx = .
COs x

Prove that
sec’x =1+tan’x.
6. Prove that
(a) tan(—x)= —tanx
(b) tan(x + a) — tanx +tana

l—tanxtana’
7. Show that if

t(x)=tanx (—%<x<%),

then

t'(x)=sec’x (—-7-27-<x<127-).

If v is the inverse function of ¢, prove that

o _n 7
v:( oo,oo):>( 2,2)
and that
1
v'(x)= -0 < x< ).
D= )
8. If x is not a multiple of #, prove that
cosx+cos3x+cosSx+ -+ +cos(2n—l)x= M s
2sinx
and
‘2
sinx+sin3x+sinSx+ - - - +sin(2n—1)x=§1.l—-n—)£
sinx

8.5 TAYLOR'S THEOREM

8.5A. Suppose that for all x in some interval J the function f may be expressed as
fx)=Ag+ A (x—a)+ Ay(x—a)’+ - + A, (x—a)"+ -, (1

where a€J. We say that (1) is an expansion of f in powers of x—a. Now we will
Sformally show how to compute the coefficients 45, 4,,....
If we set x =a in (1), then all terms on the right vanish except the first one (4,) and so

f(a)=4,.
If we take the derivative on both sides of (1), we have
f’(x)=Al+2A2(x—a)+3A3(x—a)2+ N
so that
f'(a)=A4,.

In the last step we made two unverified assumptions. First we assumed that f'(x)
exists, and second we assumed that the derivative of the right side of (1) may be
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computed by taking the derivative of each term separately. Since there are infinitely
many terms on the right side of (1), this method is not justified by anything we have
proved thus far.

Plunging on we have

f7(x)=24,+3-245(x—a)+4-3(x—a)’+ -

and so
f(a)=24,.
In general, for any n=0,1,2,... we have
fO(x)=ntd,+(n+1)(n): - ()4, ,(x = a)
+(n+2)(n+1)-+- 34, (x—a)’+---
so that
f(a)=n'A,.

(Here f©@ means f and 0! =1, by definition.) We have thus formally shown that

(n)
A,,=fn!(a) (n=0,1,2,...).
The right side of (1) thus becomes
f(a f(a A n
f@+ D2 e D g e D oy

The series (2) is called the Taylor series (or Taylor expansion) about x=a for the
function f. The special case a =0—that is,

f(0) f”(O) 1)
FO+ x+ R

n

is sometimes called the Maclaurin series for f.

It is clear that f*(a) must exist for all n=0,1,2,... before we can even write down the
Taylor series for f(x) about x=a. However, even if f(x) has a Taylor series (2) about
x = a, the series (2) may not converge to f(x) for any x (except, of course, x =a). [In the
next section we show that the Maclaurin series for f(x)=e~'/*" has all terms equal to 0.]

Our investigation of Taylor series proceeds as follows: First we will establish the
formula

f)=f(a)+——(x-a)+ (x—a)*+ (x=a)"+ R, \(x) (3)

under suitable condmons on f. This formula is called Taylor s formula with remainder.
The remainder term R, ,(x) can be expressed in various forms according to our needs.
Thus for a given function f, showing that the Taylor series (2) converges to f(x) can be
accomplished by proving that

/@ f'(a) f‘”’( a)
P

lim R, ,(x)=0. @)

The proof of (4) may be easy, difficult, or impossible according to what function f is
involved.
Let n denote any nonnegative integer and 4 any positive number.

8.5B. LEMMA. Let f be a real-valued function on the interval [a,a+ h] such that
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F@*D(x) exists for every x E[a,a+ h]* and f”* " is continuous on [a,a+ h]. Let
R, i(x)= %fax(x— DSEE(dr (xE[a,a+h];k=0,1,...,n).
Then
W) a)
Ry (x)— Ry (%)= T(x—a)k (x€[a,a+h];k=1,...,n).
The same result holds if #<0 and [a,a+ Ah] is replaced by [a+ h,a].

PROOF: Using integration by parts we have
1 x
Renr(0)= 77 [ (x= 0% (0)ds
_ - )

-li—c'—fx(x—t)k_lf(k)(t)dt

—(x—a)*
_k_____f(k)(a)+ R (x)
The lemma follows.

We next establish Taylor’s formula with the integral form of the remainder.

8.5C. THEOREM. Let f be a real-valued function on [a,a+ k] such that f@*"(x) exists
for every x €[a,a+ h] and f®*V is continuous on [a,a+ h]. Then

F(a
f() —a)+ ()(x

f(")( )

n'

(x—a)"+ R, (x) (x€[a,a+h])
where
— 1 * ne(n+1)
Ryr()= = [ (x=0)"f"* (1)t
The same result holds if #<0 and [a,a + k] is replaced by [a + h,a].

PROOF: With R, as in 8.5B we have

~Ry(x)=~ j; " f(0ydi=f(a)—f ().

Also, by 8.5B,
f/
R(0) - Rx) = 12 (xa),
f"(a
Ry(x) = Ry(x) = (. )(X‘a)z’
(a)

Rn(x)_RrM-l(x): (x—a)

* The existence of f**(x) for every x €[a,a+ k] implies the existence of f'(x),f”(x),....f(x) for every
x E[a,a+ h]. By f®(a) and f*)(a+ h) (k=0,1,...,n) we mean, of course, one-sided derivatives.



238 THE ELEMENTARY FUNCTIONS. TAYLOR SERIES

If we add all these equations, we obtain

” (4
R, .i(x)= —f(x)+f(a)+&( - )+f2('a)(x_a)2+... U ()

The theorem follows.

(x—a)".

Thus if f has derivatives of all orders on [a,a + k], and if

lim R, ,(x)=0,
then -
f(x)=f(a)+ f( )( x—a)+ fz(’a) (x—a)2+~. U (a)(x a)"+ -

That is, the Taylor series for f converges to f(x). It is usually easier to handle the
remainder term R, (x) when it is put in a different form. To accomplish this we need a
result that is sometimes called the second mean-value theorem for integrals.

8.5D. THEOREM. Let ¢ be a continuous (real-valued) function on the closed bounded
interval [a,b], and let g be a continuous function on [a,b] such that

g(n>0 (a<t<b).
Then there exists a number ¢ with a < ¢ < b such that
b b
[(egdt=g(c) [ g(r)dr. (1)
a a

PROOF: By 6.6F the continuous function ¢ on the compact interval [a,b] attains a
maximum value M and a minimum value m. Then, since g(¢) > 0 for all ¢,

mfabg(t)dt<fab<p(t)g(t)dt< Mj;bg(t)dt. )

If g is identically zero, the theorem is obvious. We may therefore assume that g(¢)>0 for
some ¢, so that

b
f g(H)dt>0 -
a
(why?). From (2) we then have
m<O<M
where
b
[eg
=
b
f g(1)dt

Since m and M are in the range of @, theorem 6.2D implies that 4 is in the range of ¢.
That is, @(c)= 0 for some ¢ €[a,b]. Equation (1) follows immediately.

We can now establish Taylor’s formula with the Lagrange form of the remainder.

8.5E. THEOREM. Let f be a real-valued function on [a,a+ k] such that f®*D(x) exists
for every x E[a,a+ h] and f"*V is continuous on [a,a + h]. Then if x E[a,a+ h], there
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exists a number ¢ with a < ¢ < x such that
"(a

f"(a
f(x)=f(a)+ )(x a)+ ()( x—a)’

f(") a . f(n+l) .

+%(X "+ _H()c')( —ay,

The same result holds if 2 <0 and [a,a+ A] is replaced by [a+ h,a].

PROOF: By 8.5D [with p=f"*1 and g(¢)=(x—1t)"/n!] we have
(n+l)(C)

Ryer(x)= ¢ .[fWHMsz)w——————f(-ﬂfw

a

for some ¢ €[a, x]. Thus

f(n+1) +|
Rn+l(x) ( +1()|) (X-' )”

This and 8.5C complete the proof.

It is important to note that ¢ depends on n (since it depends on f"* 1) as well as on x.
For an easy illustration consider f(x)=e* (— o0 < x < o). Then f™(x)=e* for all x
and all n=0,1,2,.... If we take a=0 in 8.5E, we have ..

i X2 x" ecxn+l
1

TR R ey 1)

where 0<c< x (or, if x<0,x <c¢<0). Hence, no matter what n and x are, we have
0<e®<1+e* Since lim,  x"*'/n!=0 (verify) we may let n approach infinity to
obtain

x | x? x" > x
e"=]+_+_+...+_'+...=2—T
: n: n

for every real x. Thus the Maclaurin series for e* converges to e* for all real x.

8.5F. If we take x=a+h in 8.5E, then c=a+ 6h where 0< < 1. The conclusion of
8.5E then reads: There exists # with 0< 8 <1 such that

f(a f” f(n) f(n+l) + 0k
fla+hy=f(a)+ = () 2(|) bt n'(a)h + (nial)! Lt (1)
Consider f(x)=logx (x >0). Then
_ —1)"" Y (n—1)!
fvhimvh;ﬁmwthJjg—l.

If we put a=1, then, for all n, f")(x) exists for every x €[1,1+h] if h>0. Also, if
—1<h<0, then f™(x) exists for x E[1 + A, 1].
Now, for this f, (1) becomes
3 ___ln—lhn _]"hn+l
log(1+hy=0+h— 222 DT R (D Q@
2 3 n (n+1)(1+0h)"*!
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If 0< A<, then
(_ 1)"hn+l

<l
(n+1)(1+0n)"*" | n’
and so the remainder term in (2) approaches 0 as n approaches infinity. Thus if 0 < A <1,
n—lyn ) n—1lgn
S (=D"'h o (=D
log(l+h)=h= T+ =+ —t -E —. 0
In particular, 1 -1 +1 - -+ =log2. (See the example after 3.3B.) If —1<h <0, itis

still true that the remalnder term in (2) approaches 0 as n approaches infinity, but it is
not (as of now) easy to show. [Try it. The difficulty is that the denominator in
(= D""*'/(n+1)(1+ 6h)" may be very close to 0 if & is close to —1.] However, the
proof that (3) holds for —1< h <0 will not be difficult after we introduce still another
form of the remainder.

The next theorem establishes Taylor’s formula with the Cauchy form of the remainder.

8.5G. THEOREM. Let f be a real-valued function on [a,a+ 4] such that f®*D(x) exists
for every x€[a,a+ h] and f"*V is continuous on [a,a + h]. Then if x E[a,a+ h], there
exists a number* ¢ with a < ¢ < x such that

IO (o aye LD oy

f(n) f(n+l) ¢
(a)< o+ I e x-a)

The same result holds if #<0 and [a,a+ h] is replaced by [a + h,a].

f(x)=f(a)+

b R

PROOF: By 8.5D [with @(¢)=f"*D(r)(x— )" and g(f)= 1] we have
G [
1dt

Ryr()=op [ 1 D) (= )=

for some ¢ €[a,x]. Thus

f(n+l)( )

R, y(x)=——(x—¢)"(x—a).
This and 8.5C complete the proof.

8.5H. If we take x=a+h in 8.5G, then c=a+ 0h where 0< 0 < 1. The conclusion of
8.5G then reads: There exists § with 0< 8 <1 such that

f( @, @, f(")(a) f"'*"(a+9h)

2' .o ] ] (1_0)”hn+l'

Now consider, as in 8.5F, the special case where f(x)=Ilogx (x >0) and a=1. Then, if
|h| <1, we have, by 8.5G,

2 -1 tpn —1Y'(1—=p\pnt!

* The c in this theorem is not, in general, the same as the ¢ in 8.5E.
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Now suppose — 1 < h <0 (which was a case we could not handle with the Lagrange form
of the remainder). Since 0< # <1 we then have

1460h>1+h
and also

Using this we have

(=D'A=0yr"" -9

(1+6n)"*!

Thus the remainder term in (1) approaches zero as n approaches infinity. This shows that
equation (3) of 8.5F also holds for —1<A<0.

We have deduced Taylor’s theorem with the Cauchy (or the Lagrange) form of the
remainder from 8.5C—Taylor’s theorem with the integral form of the remainder. We can
also prove Taylor’s theorem with the Cauchy (or the Lagrange) form of the remainder
directly from the generalized law of the mean 7.7C. Indeed, with this method of proof,
we do not need to assume that f®*D is continuous but only that f"*1 exists. We give
details in the Cauchy case. The Lagrange case will be an exercise.

|h|n+l <|h|n+l
|1+9h| 1+h°

8.51. THEOREM. Even if the hypothesis that f"* 1 is continuous on [a,a + ] is dropped,
theorem 8.5G remains true.

PROOF: Fix x€[a,a+ h]. Then if 1 E[a, x], let

(n)
F)=f(x)=f(t)- ()( ) I d ()(X* n", (1)
G(t)y=x—-t
Then easy computation shows that
— f (g
F(f)=———(x -1, (2)

where F’ means the derivative of F with respect to ¢.
Since G'(¢)=—1 for all tE[a,x], the hypotheses of 7.7C are satisfied (with F,G
instead of f,g). Hence, there exists ¢ €(a, x) such that

F(x)—F(a) F'(c)
G()=G(a) G
But F(x)= G (x)=0, and G'(¢)= — 1. Then using (2) we obtain

F(a) +f0*D(c) n
G(a) F( )_ ———( C) >
and so
f(n+l) ¢
F(a)——()(x c)"(x—a). (€)]

The theorem follows if we set t=a in (1) and use (3).

A close examination of the proof shows that all that is really required is that f be
continuous on [a,a+ 4] and that f"*D(x) exist for every x in (a,a + h). For then F will
be continuous on [a,x] and F’(¢) will exist for every ¢ in (a,x).
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Exercises 8.5
1. Find the Taylor series about x=2 for
f(x)=x*+2x+1 (-0 <x< o).

Prove that the Taylor series converges to f(x) for every real x.
2. Write Taylor’s formula with the integral form of the remainder for
f(x)=sinx (—o<x< )
and a=0.
Show that
|X|"+ 1

an+1(x)|<m

(—oo<x<00).

3. Show that the Taylor series about x =0 for f(x)=sinx converges to sinx for every
real x.

4. Write Taylor’s formula with the Lagrange form of the remainder in the following
cases:
(@) f(x)=log(1+x) (—1<x< )

a=2

n=4.

—tan—1 _T kil
(b) f(x)=tan"'x ( 2<x<2)

a=0

n=3.

5. Write Taylor’s formula with the Cauchy form of the remainder for

fx)=(1-x)"?  (-1<x<1)

and a=0.
6. If a>0,h>0, and n € I, prove that there exist #,0< <1 such that
2 —1)""thn! —-1)"h"
Lo_1_a mr o 6D L e
ath a g g3 a” (a+0h)"*!

7. If f” is continuous on [a— 6,a+ 8] for some § >0, prove that
_ f(a+h)=2f(a)+f(a—h)
lim

h—0 h?

=£"(a).

8.6 THE BINOMIAL THEOREM

8.6A. If xE R, then the formulae
(1+x)?=142x+x2,
(1+x)*=143x+3x2+ x>,

are familiar from beginning algebra. In “college” algebra the more general formula
m(m—1)

(l+x)m=1+mx+—2!—x +ee+x" @)
is taught. Here m is any positive integer and the coefficient of x” is
! m(m=1)- - (m=n+1)
nl(m—n)! 1-2--n

forn=1,...,m.
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A proof of (1) may be easily given on the basis of Taylor’s formula (with any form of
the remainder).
If mel, let
f(x)=(1+x)" (oo <x<o0).
Then f™(x) exists for all x and all n. Indeed, if n=1,...,m then
fO(x)=m(m—1)--- (m—n+1)(1+x)"""

while f™(x)=0 if n> m. Hence,

fMOYy=m(m—=1)--- (m—n+1) (n=1,...,m),
f™(0)=0 (n>m).
If we now use Taylor’s formula, we have
f(0 f7(0 A ()
f(x)= f(0)+—(—) + 2(! )x2+-~~ m(') m+0.

That is,

m m(m=1) | m(m—1)---(m— m+l)
(1+x)" =l+mx+ —5—=x"+--- + ,
2! m!

which establishes (1).

8.6B. If m is not a nonnegative integer, there is still a formula for (1 + x)” (provided
|x| < 1). This formula can also be derived from Taylor’s formula, but much more
difficulty is encountered.

THEOREM. If m € R is not a nonnegative integer, then

il . el ) JOVRR

(1+x)"=14+mx+
provided that |x| < 1.

FIRST PROOF: If f(x)=(14+x)" for —1<x <1, then
fP>(x)y=m(m=1)---(m—n+1)(1+x)"""  (n=1,2,...).
Thus for any n, Taylor’s formula with the Cauchy form of the remainder (as in 8.5H with
a=0,—1<h<1) yields
m(m—1) m(m—1)---(m—n+1)

SRy =1+ mh+ ———h?+ - + — R"+R,., (2

where
B m(m—1)---(m—n)

R, — ((1+6m)" "1 (1=0)"n"*),
m(m—1)---(m—n n

R, = )n' ( )( ) e omy i,
m(m—1)--

Ryl < - }<1+oh)m npre, )

We emphasize that § depends on n so that the behavior of (1+6h)”~! as n approaches
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infinity is not obvious. If m > 1, then m—1>0, and so
0<(1+0R)™ ' <(1+]A)"

If m<1, then

o<(l+om)m'=—L 1
(1+6m)' =" (1=|a)'—"
= (1= |aly"~".

Hence, for any m,

(1+ 6"~ <(1 =A™

From (3) we then have
|Rn+I|<(li|hI)m_lan
where
|m(m—1)- -+ (m—n)||]"*!

iy =

n!

We have thus removed the problem created by #. Now the ratio test 3.6F shows that
2 ,a,<oco. Hence, lim,  a,=0 and so lim, R, ,=0. This and (2) establish (1)
(with A instead of x) and the theorem is proved.

[What we showed in 8.6A was simply that (1) of 8.6B holds for all x if m is a positive

integer. For then all except the first m+ 1 terms on the right of (1) of 8.6B are zero.]

SECOND PROOF: If f(x)=(1+ x)” for —1<x <1, then 8.5C yields
m—1)

f(x)=l+mx+m(2' X2+
-1):-- —n+1
m(m ) ny(m ! )x”+Rn+l(x) (4)
where
Ry ()= _")f (140" x— 1) de

m(m_l) (m_n)f(1+t'” ‘(1+ )dt

n!

If 0< x<1, it is easy to see that the function

g(n=3—  (0<i<x)

attains a maximum at t=0. If —1<x <0, then

G()=17 (x<t<0)

is nonpositive and nonincreasing on [x,0]. Hence, |G| attains a maximum at =0. Thus
in either case,
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Hence,

IRH.(x)l—‘ ) (m_")f(m)"' (2t) a
<[t )’;!“(m_ )fox(1+t)""1 ’;—;—;‘ dt‘
< m(m—l)’;!"(m‘") "‘“dt'.

Since
lim m(m—=1)---(m—n)|x|" o

n—oo n!

(as in the first proof) we have lim,_, R, (x)=0. The theorem follows from (4).

Exercises 8.6

!
1. Let (’:) denote W where k and m are nonnegative integers, k < m. Prove
that
@ 2"= 3 (7
= (%)

o m
(b) O—EO( 1)k(k).

[Hint: In (1) of 8.6A show that (’,’(’

2. Give a proof of the binomial theorem 8.6B for 0< x <1 using the Lagrange form of
the remainder.

) is the coefficient of x*. Then take x= *+1.]

8.7 L'HOSPITAL’S RULE

In 4.1D we noted that
_ f(x)  lim f(x)
lim =

x—a g(X) 'luna g(_x)

provided that both lim,_, f(x) and lim,_,g(x) exist and lim,_ ,g(x)#0. It sometimes
happens that lim__ [ f(x)/g(x)] exists even if lim,_,g(x)=0=lim,_, f(x).
L’Hospital’s rule says, roughly, that if lim _, f(x)=lim,_ ,g(x)=0, then
Sx) (%)
lim —— = lim ——
x—a g(x) x—a g'(x)
provided the limit on the right exists.
We will confine our systematic investigation of this to the case of one-sided limits at
=0—that is, limits of the form lim,_,, f(x). As we will see, all other cases can be
easily handled on the basis of this single one.
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8.7A. THEOREM. If f'(x) and g'(x) exist for every x in (0,8], if
g'(x)#0 (0<x<9),

if
i, 9=0= 1, 5(x) 0
and if .
x
e e @
then
lim f(x)
x—0+ g(x)

PROOF: By (1), both f and g will be continuous at 0 if we define f(0)=0=g(0). By
7.7C, given x €(0,8] there exists ¢ €(0,x) such that

f(x)=f(0)  f(c)
g()-2(0)  g(0)’

where ¢, of course, depends on x. (How do we know g(x)# g(0)?)

Hence,
f(x) (o)
g(x)  g(c)
Since ¢ approaches 0 as x—0+ we have, by (2),
lim i(i)— =
x—0+ g'(c)
The theorem then follows from (3).

(0<x<8). (€)

For example, if f(x)=sinx and g(x)=x for O < 1, the hypotheses of the theorem
are satisfied. Hence,

. sinx . COSX
lim = lim =1.
x—0+ X x—0+ 1
In some problems, two (or more) applications of the theorem are necessary. For
example, if f(x)=sinx— xcosx and g(x)= x?sinx, then f'(x)= xsinx,g'(x)=x>cosx +
2xsinx, and so

J'(x) _ sinx _ o(x)

g'(x)  xcosx+2sinx  Y(x)°

Here lim,_,, @(x)=0=lim,_,,y(x). But, by 8.7A
‘P(X) . 9'(x) . COS X _ 1

im im m - =
x—0+ 1p(x) X—0+ (x) x—l>0+ —xsinx+3cosx 3

Hence,

- uim ?'(x) i P(x) li; J(x)
3 x>0+ x[/(x) xo0+ P(X)  x-0+ g/(x)

i f(x) . sinx — ccosx
= lim = —_—
x>0+ g(x) x—0+ xzsinx

where 8.7A was used at the second and fourth equality signs.
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8.7B. If we wanted to prove the result for limits as x—a+ corresponding to 8.7A, we
merely need to use the fact that if F(x)=f(x+ a), then
lim F(x)= L +a)=li ,
x—l>l(§1+ (X) x_l)l'(l)'l_'_ f(x a) X—lgl'*‘ f(X)
and

lim F/(x)= lLim_f/(x).

x—0+
Thus 8.7A with 0+ replaced by a+ may be proved by applying 8.7A (as it stands) to
F(x)=f(x+a) and G(x)=g(x+ a).
Similarly, if we wish to prove 8.7A with 0+ replaced by oo, we would consider

Feo=a(3)  oe=e(3)
For
Jim F(x)= Jim /(x)
Furthermore, F'(x)=—(1/x%f(1/x) and G'(x)= —(1/x%) g'(1/x). Hence,
F(x) (/%)
G'(x) g(/x)’

and so
im —m = lim & .
x=0+ G'(x) x—00 g'(x)
The reader should now be able to formulate and prove the variants of 8.7A for x—a+
and x—o0 and x—a—.

8.7C. Under the hypotheses of 8.7A, the quotient f(x)/g(x) is sometimes called an
indeterminate form of type 0/0, since both numerator and denominator approach 0 (as
x—0+).

Another extremely important case is called indeterminate of type oo /0. This involves
a quotient f(x)/g(x) where both f(x) and g(x) approach infinity. in the following sense
(compare with 2.4A).

DEFINITION. Let f be a real-valued function whose domain includes all points of some
interval (a— h,a+ h) except possibly a itself. We say that f(x) approaches infinity as x
approaches a if given M >0, there exists § >0 such that

f(x)>M (0<|x—a|<§).

In this case we write f(x)—>o0 as x—a.
Similar definitions apply to the statements

f(x)—o0 as x—a+,
f(x)>o0 as x—a-—,
f(x)—>o0 as  x—o0.

We leave these definitions to the reader.
Now we prove the second important case of L’Hospital’s rule.

8.7D. THEOREM. If f'(x) and g’(x) exist for every x in (0,8], if
g'(x)#0 (0<x<9),
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if
f(x)»o and g(x)—oo as x—0+,

and if
AC))
R e M)
then
o,

im =
x>0+ g(x)

PROOF: Let h(x)=f(x)— Lg(x) for 0< x <48. Then A'(x)=f"(x)— Lg'(x) and so, by
0,
i h'(x)
0w 8(x)
Given € >0, this and the hypothesis that g(x)—o0 as x—0+ imply the existence of §, >0
such that
g(x)>0 (0<x<3$)) (2)

and such that
' (c)
g'(c)

€

<3

for any c€(0,8,). If x€(0,6,), then
h(8,)—h(x) _ K(ec)
8(8,)—g(x) &(c)

for some c€(x,8,). Hence,

h(x)—h(8)| ¢ -
— <5 - (0<x<$)). 3
lg(x)—g(so 2 (O<x<d) ®
Since g(x)—>o0 as x—0+, there exists §, < §, such that
g8(x)>g(8)  (0<x<$y). (4)
From (2) and (4) we thus have
0<g(x)—g(d)<g(x) (0<x<$y). ©)
From (3) and (5) we then conclude
|h(x)=h(&) ¢
—g(x)—<5 (0<x<9,). (6)
Now choose §; < 8, such that
|h(8)]
2(%) <3 (0< x<8,). @)

If 0<x < §;, we then have
h(x) _ h(x)—h(8) h(3)

g(x)  g(x) g(x)’
h(x) | _1h(x)=h(8)I  |A(8))]
g(x)| = g(x) g(x)

b
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and so, by (6) and (7),

h(x)
‘g(x) <e (0<x<8y).
This proves
h(x)
' g(x) e
Since

J) b
gx) g P

the theorem follows.

8.7E. In 8.7D, we may replace x—0+ by x—a+,x—00, or x—>a —. We omit the proof
of this.
For an example, let f(x)=logx,g(x)=x for x>0. Then f(x)—o0 and g(x)—oo as
x—o00. Since f'(x)=1/x,g'(x)=1 we have
. (%)
lim — - =uU
x> g'(x)

Hence,

X500 g(x) xl»ngo X

Now consider lim,_, (x"/e*) where n€ 1. We have

X—>00
n n—1 ]
.ox . . n!
lim = = lim ~—=---= lim —| =0.
xX—>00 @ X—>00 e XxX—00 e

Thus
lim - =0 (n€l).

X—00 ex

f(x)=lim,_,, f(1/x) we deduce

: 1
x1—1>I(§1+ 'xne—]/x—o (HEI). (1)

Using the fact that lim

X—> 00

This enables us to give a very interesting example concerning Taylor series. Let
g(x)=e~V*  (x>0),
£(0)=0.

Then from (1) we have

g(x)—g(0) . e 1/x
— = lim

"(0)= li =
g(0)= lim v
Since
, e—l/x
g'(x)= 2 (x>0),

(1) may also be used to show that g”(0)=0. Indeed, since (for x >0) g®)(x) is a finite
sum of terms of the form e~!/*/x™, an easy induction argument will show that

g(0)=g'(0)="-- =g"(0)="--- =0. @)
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Hence, the Maclaurin series for g is identically zero, and therefore does not converge to
g(x) for any x >0.
This shows that the existence of all derivatives of a function f at a point a does not

imply
X flk)
=D T (- ay
k=0

for any x # a. That is why we must deal with the remainder term.
Note that all derivatives g™(0) in (2) are right-hand derivatives. The function A
defined by

h(x)=e~ V¥ (x#0),
h(0)=0,

has h(0)=h(0)=--- =h™(0)="-- -, where all these derivatives are two-sided. We leave
the verification of this to the reader.

8.7F. Other kinds of indeterminate forms may often be handled by reducing them to
one of the types 0/0 or oo /0. For example, consider x ~* as x—0+. This may be called
an indeterminate form of type 0°. Now

—-log_x _ lOg(l/X)

logx ™*= —xlogx=

1/x  1/x °
and
log(1/x)
(1/x)
is of type o0 /0. Hence,
. o log(l/x) . —1/x
lim logx *= lim ————= lim
x—0+ x—0+ l/X x—0+ —l/xz
= lim x=0,

x—0+
where 8.7D was used at the second equality sign. But then, since the exponential
function is continuous, we have

lim x~*= lim e'°5"_x=exp( lim logx"‘)=e°=1.
x—0+ x—0+ x—0+

More generally, an indeterminate form [F(x)]°*® may be handled by considering
log F(x)
1/G(x)

As x—0+, the quantity 1/x2—1/(xtanx) is indeterminate of type oo — co. However,
with a little algebra we can write

log[F(x)]G(x)=

1 1 _ tanx—x _ sinx—xcosx

x? xtanx  x2tanx x2sinx

The quantity on the right is indeterminate of type 0/0. We have already computed its
limit (as x—0+) following theorem 8.7A.



Exercises 8.7

1.

Evaluate the following limits.
(a) lim tanx — x

x=0+ x —sinx
(®) lim, g, 10

log[(1+x)/(1—x)]

(¢) lim, . :

. Do the same for

log(1+ e3*

(a) limx—»w¥'
log x

x=>%0 " 0.0001 °

x(Vx*+4 —x).

(b) lim

(c) lim

X—> 00

(Hint: Rationalize the “numerator.”)
Do the same for

&5 6
(2) lim x—5x"+4x .

x—1+ (1 _ X)2
1 —4sin*(7x /6
(b) nmm—(/).
1—x2
. Same for
. 1 1
(a) llmx—>0( X Sinx )

(b) lim,_ x'/*.

. 1.«
(¢) lim (1+ ;) .

X—>00

. L (% vive
(@ lim,_y—— f3 e dt.

8.7 L'HOSPITAL'S RULE
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9

SEQUENCES AND
SERIES OF FUNCTIONS

9.1 POINTWISE CONVERGENCE OF SEQUENCES OF FUNCTIONS

In Chapters 2 and 3 we discussed convergence of sequences and series of real
numbers. In this chapter we discuss the convergence of sequences and series of func-
tions. We deal almost exclusively with real-valued functions.

9.1A. DEFINITION. Let { f,}5_, be a sequence of real-valued functions on a set E. We
say that { f,};>_, converges to the function f on E if
lim f,(x)=f(x) (x€E). (1)

If (1) holds, we sometimes say that { f,}5_, converges pointwise to f on E. For if (1)
holds, then, for every point x of E, the sequence { f,(x)}%., of real numbers converges
to f(x). Here are several examples.

If

S(x)=x" (0<x<1),
then { f,}_, converges to f on [0, 1] where
f(x)=0 (0<x<1),

f(y=1.
See Figure 25.
For a second example let
X
= < .
g()= 15—  (0<x<)

If x>0, then 0< g, (x)< x/nx=1/n. Hence,
lim g,(x)=0 (x>0).

Also, since g,(0)=0 for each n€ 1, it is clear that { g,}¥_, converges to 0 (the function
identically 0) on [0, o).
252
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y (1,1)

FIGURE 25. Graph of y = f (x), where f,(x)

=x"(0<x<1)
Next, let
h,(x - 0<x< ).
) 1+ nx? ( )
Then if x >0, we have
1/nx
ha(x)= —— 57
(1/n%x*)+1

and hence, lim,_, _k,(x)=0. Since h,(0)=0 for each n € I we see that {h,}*_, converges
to 0 on [0, c0). See Figure 26.

N|=

1
|
!
1

12 2
FIGURE 26. Graph of y = h,(x), where h,(x)= — 2
1+ n2x?
0<x<®)

For a fourth example let x, denote the characteristic function of [— n,n]. For any
xE€R" we have x,(X)=Xn+1(X)=Xns2(x)="--=1 provided n>|x|. (For then x&
[—n,n]). Hence,

: = 1
Jim Xa(x)=1 (XERY),
and so {x,}>-, converges to 1 on (— 0, 00).

9.1B. According to definition 9.1A, the sequence of functions { f,};’-, converges to f

n=1

on the set E if, for each x € E, given € >0 there exists N € [ such that

lh(x)=f(0)<e  (n>N). (1)
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In general, the number N depends on both € and x. It is not always possible to find an N
such that (1) holds for all x in E simultaneously.

For example, if f,(x)=x" (0 < x < 1), then, as we have seen, { f,};~, converges to f on
[0,1] where f(x)=0 (0< x<1) and f(1)=1. With e= 1, then, for each x € E, there exists
N €1 such that

IS () =f(X)<3  (n>N). )

If x=0 or x=1, then (2) is true for N=1. However, if x=2=0.75, then the smallest
value of N for which (2) is true is N=3. For, if x=3, then f,(x)=(3)" while f(x)=0.
Thus | f,(x)—f(x)|=(2)", and (3)" <3 if and only if n> 3. Similarly, if x=0.9, then the
smallest value of N for which (2) is true is N=7.

Indeed, there is no N € I such that (2) holds for all x €[0, 1]. For, if such an N existed,
we would have

x"<3 (n>N)

for all x in [0, 1). This implies x”¥ <1 (0< x < 1). Letting x—1- we obtain the contradic-
tion 1<4.

For the second example in 9.1A the story is different. For, if

X
<
1+ nx (0< x <o),

then 0< g,(x)<1/n (0< x < ). Hence, for any € >0 the statement

|g.(x)=0]<e  (n>N) ©)
is true for all x in [0, 00), provided only that N >1/e. (For in this case | g,(x)—0|<1/n
<1/N<e for all x in [0,0).) Thus for this sequence { g,};r—; an N €I can be found

such that (3) holds for all x € 1. This N depends only on € and not on x.
Now consider

8(x)=

nx
1+ nx?
We have seen that {4,}_, converges to 0 on [0, o). Given € >0, we know therefore that
for each x €[0, o) there exists N € I such that

|h,(x)—0|<e (n>N). 4)
However, note that h,(1/n)=1. Hence, if e= 14, there is no single N €/ such that (4)
holds for all x €[0, o). For if such an N existed, we would have

hy (x) <3 (0< x < ).

But if x=1/N, this is a contradiction.
We leave it to the reader to show that if e<1, then there is no N €7 such that the
statement

h(x)=

(0< x<00).

[ Xu(x)=1<c (2> N)

holds for all real x, where x,, is as in the fourth example following 9.1A.

FExercises 9.1

1. Let

=222 (0<x<),
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Does there exist N € I such that
| fi(x)—0|<f5  (n>N)

for all x €[0, 1] simultaneously?
. Let

f(x)= 11x 0<x<1)

Show that { f,}°_, converges pointwise on [0, 1]. If
fx)=lim f,(x)  (0<x<1),
is there an N €1 such that
| f(x)=f(x)|<z  (n>N)

for all x €[0, 1] simultaneously?
. Let x, be the characteristic function of the open interval (0,1/r), and let

S (x)=nx(x) (0<x<1).
(a) Show that { f,}>_, converges to 0 on [0, 1].
(b) Does there exist N €I such that
| £ (x)=0|<3  (n>N)
for all x €[0, 1] simultaneously?
1
(c) Calculate nll)ngo fo o
(d) Compare (a) and (c).
. Fornel let
fi(x)=nx(1-x%"  (0<x<1).
(a) Show that { f,}_, converges to 0 on [0, 1].

1 )
(b) Show that { f iA } converges to 3.
0 n=1
(c) Compare (a) and (b).
. Let

S (x)= f:-e"‘/" (0< x < o).

(a) Prove that { f,}_, converges to 0 on [0, o).

n=1

(b) Does there exist N € such that
| f(x)=0l<f (n>N)

for all x €[0, c0) simultaneously? (Answer; No.)

255

*)

(c) If 4>0, does there exist N such that (*) holds for all x in [0,4] simultaneously?

(Answer: Yes.)

9.2 UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS

We have agreed to say the { f,}%_, converges (pointwise) to f on E if, for each x EE,
nfn=1 g p

given € >0 there exists N € I such that

| L (x)=f(x)|<e  (n>N).

(M
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We have seen several examples in which it is impossible to find an N such that (1) holds
for all x € E simultaneously.

If for each € >0 it is possible to find an N such that (1) holds for all x € E, then we say
that { f,}>_, converges uniformly to f on E.
9.2A. peEFINITION. Let { f,}°_, be a sequence of real-valued functions on a set £. We
say that { f,}-, converges uniformly to the function f on E if given € >0, there exists
N €1 such that

| f,(x)=f(x)|<e (n>N;x€E). (2)

The wording of this definition implies that N depends on € but not on x. It is clear that
if { f,}-, converges uniformly to f on E, then { f,}%_, converges pointwise to f on E.

Thus if g,(x)=x/(14+nx) (0<x<o0), then our work in Section 9.1 shows that
{ 8,} =, converges uniformly to 0 on [0, ). For we have already shown that given ¢ >0
there exists N € I such that

|g,(x)—0|<e (n>N;0<x<o0).

(Any N such that N >1/e will do.)
It is not too easy to state what it means for the sequence { f,}°_, not to converge
uniformly to f on E. We shall now do this.

9.2B. coroLLARY. The sequence { f,}i_, does not converge uniformly to f on E if and
only if there exists some € >0 such that there is no N €7 for which the statement

| f,(x)=f(x)|<e (n>N;x€EFE)

holds.
The reader should not proceed until he is convinced that 9.2B is equivalent to 9.2A.
If f,(x)=x" 0<x<1) and f(x)=0 (0<x<1),f(1)=1, then we have seen that
{ f,}o=1 converges pointwise to f on [0,1]. However, { f,}°_, does not converge
uniformly to f on [0, 1]. For, as we saw in 9.1B, if =, then there is no N €7 such that

| f,(x)—f(x)|<e (n>N;0<x<1).

Similarly, the sequences {h,}*_; and {x,}5-, of Section 2.8 do not converge uni-
formly on their domains to 0 and 1, respectively (even though {A,}5_; and {x,}5-, do
converge pointwise to 0 and 1). (Verify!)

9.2C. Note that (2) can be expressed as
f(x)—e<f,(x)<f(x)+e (n>N;x€E).

We can describe uniform convergence (of a sequence of real-valued functions whose
domain is a set E of real numbers) in the following geometric terms: In order for
{ f,}’=, to converge uniformly to f on E, given € >0 there must exist N € I such that if
n> N, then the entire graph of y = f,(x) must lie between the graphs of y =f(x)— e and
y=f(x)+e. See Figure 27.

This geometric criterion, with €<, gives us an alternate demonstration that the
sequences { f,}>., and {h,}-, in Figures 25 and 26 do not converge uniformly. For
{ £,}x-, in Figure 25 converges pointwise to f where f(1)=1 and f(x)=0 for 0< x <.
However, no matter what n is, there will be points on the graph of y=f (x) for x
sufficiently near (but not equal to) 1 that are not between the graphs y =f(x)—e€ and
y=f(x)+e. Similarly, {h,}>_, in Figure 26 converges pointwise to 0. However, for each

n, the point <-r17, —1-> is on the graph of y = h,(x) but this point does not lie between the
graphs of y= —¢ and y =e.
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y=flx)+e

¥ = fulx) y=foo) —e

FIGURE 27.

9.2D. Here is still another way to view uniform convergence. If { f,}%_, converges
uniformly to 0 on E, then given € >0 there exists N such that

| £, (x)|<e (n>N;x€E).
This implies

u.b. < 2N).

Lub| f,(x)l<e (1> N)

Hence, if { f,}~_, converges uniformly to zero on E, then
lim l.u.E.|f,,(x)|=0. )

n—>o0 xe

Conversely, it is not difficult to show that if (1) holds, then { f,}5_, converges uniformly
to 0 on E.
This readily proves that the sequence {A,}5_, of Section 9.1 does not converge
uniformly to zero on (— o0, o). For
1 = l =
h,,(n) -3 (=12,

and hence, lu.b._ -, . |h,(x)| cannot approach zero as n—co.

Lub. |h,(x)|>

—o<x< o0

9.2E. From 9.2A it follows immediately that { f,}°_, converges uniformly to f on E if

n=1

and only if { f,—f}°-, converges uniformly to 0 on E. From 9.1D we then have

THEOREM. The sequence of functions { f,}%_, converges uniformly to f on E if and
only if
l.u.l%.| Lo (x)=f(x)|>0 as n—oo.
x€

The next result is called the Cauchy criterion for uniform convergence. It is analogous
to the result that a sequence of real numbers is convergent if and only if it is Cauchy.

9.2F. THEOREM. Let { f,}%_, be a sequence of real-valued functions on a set E. Then
{ £}, is uniformly convergent on E (to some function f) if and only if given €>0,
there exists N €/ such that

| fn ()= £, (x)| <€ (m,n>N;x€EE). (1)

PROOF: Suppose first that { f,}5_, is a uniformly convergent sequence of functions

n=1

on E, converging to f on E. Then, given >0, there exists N €/ such that
|f,,(x)—f(x)|<% (n>N;x€EE).
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Thus if m,n > N, we have, for any x € E,
lfm(x)—f;,(x)|<|fm(X)—f(x)|+|f(x)—fn(x)|<.§_+.§_

and hence, (1) holds for this N.

Conversely let { f,}>., be any sequence of functions on E such that, given € >0, there
exists N € I such that (1) holds. We must show that there is a function f on F such that
{ f,} =1 converges uniformly to f on E. From (1) we see that, for each fixed x € E, the
sequence of real numbers { f,(x)}y-; is a Cauchy sequence. Hence, lim,_,  f,(x) exists
for edch x € E. Define f by

f()=lim f,(x) (x€E).
Keeping m fixed in (1) and letting n—oc0 we obtain
| fa ()= f(x)|<e (m>N;x€E).
Since € was arbitrary, this shows that { f, }%_, converges uniformly to f on E, and the

proof is complete.

The next result, called Dini’s theorem, shows that under a very special set of
circumstances a sequence of continuous functions must converge uniformly.

9.2G. THEOREM. Let { f,}7_, be a sequence of continuous real-valued functions on the
compact metric space {M,p) such that

)< ()< < fi()<eo (xEM). )
If { f,}x-, converges (pointwise) on M to the continuous function f, then { f,}7_,
converges uniformly to f on M.

- PROOF: For each n€ 1 let g,=f—f,. Then from (1) we have

81(x) 2 8y(x) >+ - 2 g,(x)> -+ 20 (xEM). 2
Also, since { f,}5.; converges to f on M we have
"lirglo 8,(x)=0 (xeM). 3)

We must show that { g,}>_, converges uniformly to 0 on M.
Fix €>0. If x € M, then (3) assures us of the existence of N (x)€& I such that
€
gN(x)(x) < PN
Since gy, is continuous at x, there is an open ball B, about x such that

gv(y)<e  (VEB,).

The B, for all x€M form an open covering of M. By 6.5G a finite number of the
B —say
B ,B ,...B,
1 2

k

—also cover M. Let N=max[N (x,),..., N (x;)]. Now if y is any point in M, theny € ij
for some j=1,...,k. Hence,

gvip(y) <e.
But since N (x;) < N, (2) implies
an (V) < gnvep(y):
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Hence,
0< gn(y)<e
for all y € M. But then (2) shows that
0<g,(y)<e (n>N;yeM),

and so { g,} - converges uniformly to 0 on M. This completes the proof.

It is clear that 9.2G remains true if the inequality signs in (1) are all reversed. For then
we could set g, = f, — f and proceed as above.

Exercises 9.2

1L If{ £}~ and { g,}5-, converge uniformly on E, prove that { f,+g,}%_, converges
uniformly on E.
2. Let

g,,(x)=%e‘"“ (0< x<o0).

Prove that { g,} -, converges uniformly to 0 on [0, o).
3. Let f be a uniformly continuous real-valued function on (— o0, ), and for each n €1
let

f,,(x)=f(x+%) (—oo<x< o).

Prove that { f,}_, converges uniformly on (— o0, 0) to f.
4. Let

f,(x)= lix" (0<x<1).

(a) Show that { f,}_, converges uniformly on [0, 1].
(b) Does { f,}-, converge uniformly on [0, 1]?
5. Let
fu(x)=2e/" (0<x<o0).

(a) Does { f,}x-, converge uniformly to 0 on [0, 0)?
(b) Does { f;}i>-, converge uniformly to 0 on [0, 500]?

6. Let { f,}°_, be a sequence of continuous real-valued functions that converges
uniformly on the closed bounded interval [a,b]. For each n€1 let

F,,(x)=faxf,,(t)dt (a<x<b).

Show that { F,}_, converges uniformly on [a,b]. (Hint: Use 9.2F.)
7. Let

fm=% (0<x<l).

(a) Show that { f,}>_, converges uniformly to 0 on [0, 1].
(b) Does { f,}_, converge to 0 on [0, 1]?

8. Let { f,}-, be a sequence of continuous functions [0, 1] that converges uniformly.
(a) Show that there exists M >0 such that

| f,(x)|[<M  (nel;0<x<]1).

(b) Does the result in part (a) hold if uniform convergence is replaced by pointwise
convergence?
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9. Show by example that Dini’s theorem is no longer true if we omit the hypothesis that
M is compact.

10. If { f,}°_, is a sequence of functions that converges uniformly to the continuous
function f on (— o0, o), prove that

11mf(x+) f(x)  (~w<x<oo).

11. Let A be a dense subset of the metric space M. If { f,}%_, is a sequence of
continuous functions on M, and if { f,}5_, converges uniformly on A, prove that
{ f,}_, converges uniformly on M.

9.3 CONSEQUENCES OF UNIFORM CONVERGENCE

93A. If f,(x)=x" (0<x<1) for n€l, then f, is continuous on [0,1]. However,
{ f,}x_, converges (pointwise) to f on [0,1] where f(x)=0 (0<x<I),f(1)=1. The
function f is not continuous on [0, 1]. This shows that a sequence of continuous functions
may converge pointwise to a discontinuous function.

However, if { f,}2°_, is a sequence of continuous functions that converges uniformly to
f, then f must be continuous. This result will be a corollary to the following theorem.

9.3B. THEOREM. Let { f,}_, be a sequence of real-valued functions on a metric space
M that converges uniformly to the funcnonf on M. If each f, (nE€1I) is continuous at
a€ M, then f is also continuous at a.

PROOF: Given € >0 we may choose N €/ such that
|f,,(x)—f(x)|<§ (n>N;xEM).
Since fy is continuous at a there exists 6 >0 such that
| ()= (@l<3  [p(x.a)<8].
where p is the metric for M.
Hence, if p(x,a) <8, we have
| f(x)=f (@) <| f(x) =Sy () +] fy (x) =Sn (@) +] fy (@) = f(a)]

€ , €, € _
<§'+§+§—

Thus
| f(x)=f(a)l<e  [p(x.a)<8],

which proves the theorem.

9.3C. coroLLARrY. If { f }%_, is a sequence of continuous real-valued functions on the
metric space M that converges uniformly to f on M, then f is also continuous on M.

9.3D. Just as a sequence of continuous functions may converge pointwise to a discon-
tinuous function, a sequence of Riemann integrable functions may converge pointwise to
a function that is not Riemann integrable.

For example, let A ={r,,r,,...} be the set of all rational numbers in [0, 1] and let x, be
the characteristic function of the finite subset {r,,...,r,}. Then x, is bounded on [0, 1]
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and x, is continuous at all points of [0, 1] except at r,...,r,. Hence, for each n€ I, we
have x, € R [0,1]. But {x,}-, converges pointwise to x,, the characteristic function of
A. Since x, is discontinuous at each point of [0, 1],x, & R [0, 1].

On the other hand, with uniform convergence we have the following positive result.

9.3E. THEOREM. If { f,}%_, is a sequence of functions in R [a,b], and if { f,}5-,
converges uniformly to f on [a,b], then f is also in %R [a,b].

PROOF: For e=1 there exists N € such that
| £, (x)—f(x)|<1 (n>N;x€[a,b)).
In particular
() —f(®)I<1  (xE[ab]),
and so
| SOOI Ay G T F () =Sy ()] <[ Sy (¥)] +1

for all x €[a,b]. Now fy is bounded, since f, € R [a,b]. Clearly, then, f is also bounded
on [a,b].

For each n€1, let E, be the set of points of [a,b]) at which f, is not continuous, and
let E=U=1E,. By 7.3A, each set E, is of measure zero. Hence, by 7.1B, E is also of
measure zero. But if x €[a,b]— E, then x is in no E,, and so every f, is continuous at x.

By 9.3B, the function f is also continuous at x. Hence, f is continuous at almost every
point of [a,b]. Since f is bounded, 7.3A implies f € R [a,b], and the proof is complete.

We have just seen that uniform convergence is a sufficient condition for a sequence of
Riemann integrable functions to converge to a Riemann integrable function. It must not
be supposed, however, that uniform convergence is a necessary condition. For example,
if f(x)=x" (0<x<1), then { f,}_, converges on [0,1] to a Riemann integrable
function, even though the convergence is not uniform.

Similarly, uniform convergence is a sufficient but not a necessary condition that a
sequence of continuous functions converge to a continuous function. (Verify.)

9.3F. Suppose now that { f,}%_, is a sequence of functions in @R [a,b] that converges
(pointwise) to a function f on [a,b]. We now ask: If we assume that f € R [a,b], must it

b b
be true that { f £, }w converges to f f? In other “words,” if
a n=1 a

lim f, (x)=/(x),
is
lim fbf (x)dx= fbf(x)dx‘7
n—o0 J, " a )
This is equivalent to asking if

lim [*f,(x)dx=[" lim £, (x)dx. (1)

b
We sometimes express this by asking: “Is it permissible to interchange lim,_,  and f ”
a

Again, if only pointwise convergence is assumed, undesirable phenomena may occur.
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For example, let
f=2n (5 <x<Z),

n n
S (x)=0 for all other x&[0,1].

Then, for each n € I, we have

1 _ 2/n _ g_-l_ _
jof,,(x)dx-fl/n 2ndx—2n(n n)—z.
Hence,
lim flf (x)dx=2
n—oo 0 n '

On the other hand we have lim,_ . f,(x)=0 (0< x<1). For f,(0)=0 (n€1I), while, if
x>0, then f, (x)=fy ., (x)=---=0if 2/N < x. Hence,

1
fo ,,IL‘T.‘O S (x)dx=0.

Thus (1) does not hold for this sequence { f,}_;.
Once more, uniform convergence makes things work out in a desirable fashion. That
is, (1) will hold if { f,}i>-, converges uniformly on [a,b].

9.3G. THEOREM. Let { f,}2., be a sequence of functions in R [a,b] that converges
uniformly to the function f on [a,b]. Then f € R [a,b] and

b b
lim f £, (x)dx= f f(x)dx.
PROOF: That f€ R [a,b] follows from 9.3E. Given € >0 there exists N €I such that
|f,,(x)—f(x)|<b_€_—a (n>N;a< x<b). (1)
Using 7.4C and 7.4F we have
b b
‘f f,,(x)dx——f f(x)dx|=

Hence, by (1), if n > N we obtain

fabf,, (x)dx—fabf(x)dx

b
[T =1001dx| < 17,6 =F (ol

dx=c¢.

<[5

a

b
This shows that { f I (x)dx} converges to f f(x)dx, which is what we wished to

=1 a
prove.

9.3H./ Finally we take up the following question: Suppose { f,}5-, is a sequence of
functions on [a, b] such that, for each n € I, f/(x) exists for all x €[a, b]. Suppose also that
{ £,}2 =1 converges to f on [a,b]. We ask (1) does f'(x) exist for all x? and (2) if so, does
{ £}, converge to f'?

First of all, it is possible that a sequence of differentiable functions can converge
uniformly to a function that does not have a derivative at any point. For, in Section 9.7,
we will show that there exists a function F on [0, 1] which is continuous on [0, 1] but does
not have a derivative at any point of [0, 1]. But from 10.2A it will follow that there is a
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sequence of polynomial functions {P,}%_, that converges uniformly to F. Here P,(x)

n=1
exists for every n€ [l and x €[0, 1], and {P,}°_, converges uniformly to F on [0, 1], but
F’(x) exists for no x in [0, 1]. This shows that the answer to the first question is “no.”
Even if { f,}_, converges uniformly to f, and f, and f" exist for all x €[a,b], it may

n=1

happen that { f;}_, does not converge to f’ at some x. For example, if
n
fi(x)=2% (0<x<1),

then { f,}x_, converges uniformly to f=0, but { f;(1)};>-, does not converge to f'(l).
Thus in this example, the equation

lim £ (x)=( lim f,)(x)
does not hold for x=1.

What can be said is the following: If { f,}-, converges on [a,b], if each f, is
continuous, and if { f,};, converges uniformly on [a,b], then

n=1
Jim 7= Jim £,)
This is a consequence of the following theorem.
9.31. THEOREM. If (for each nE€I) f,(x) exists for each x E[a,b), if f] is continuous on
[a,b], if { f,}-, converges on [a,b] to f, and if { f,}%°_, converges uniformly on [a,b] to

g, then
g(x)=f(x) (a<x<b).

That is,
nli)rrgof,:(x)=f’()c) (a<x<b).

PROOF: Since { f/}_, converges uniformly to g on [a,b], then g is continuous on
[a,b], by 9.3C. Moreover, { f,}_, converges uniformly to g on [a,y] where y is any point
in [a,b]. By 9.3G,

y y
lim "(x)dx= x)dx.
Jim 75 (dx= [ g(x)
Thus by 7.8E,

Jim [0~ h(@]= ["g(x)dx
But, by hypothesis, lim,_,, £,(y)=£(») and lim,__, f,(a)=f(a). Thus
()~ f(a)= fayg(x)dx (a< y<b).
By 7.8A we then have
F(»)=gly) (a<y<b),
and the theorem is proved.

Exercises 9.3

J,(x) for 0< x < o0, where

fy(x)=—1

1+x"’
prove that { f,}>°_, does not converge uniformly on [0, «).

1. By examining f(x)=1im

n— 00
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2. Let g be a continuous function on the closed bounded interval [a,b]. Let { f,}5_, bea
sequence of continuous functions that converges uniformly on [a,b] to f. Prove that

tim [“fe=["fe

fi(x)=nx(1-x%)"  (0<x<1).
Use the result of exercise 4 of Section 9.1 to show that { f,}_, does not converge

uniformly on [0, 1], even though { f,}°_, converges pointwise.
4. Let

3. Let

=222 0<x<),

Show that { f,}., converges uniformly to 0 on [0,1], but that { f;}_, does not
converge (even) pointwise to 0 on [0, 1].

5. Let { f,}-, be a sequence of functions on [a,b] such that f,(x) exists for every
x E€la,b] (n€I) and
(1) { f,(xg)}x-, converges for some x,E[a,b].
(2) { £}~ converges uniformly on [a,b].
Prove that { f,}°_, converges uniformly on [a,b]. Show how this result may be used
to weaken the hypothesis of 9.31. [Hint: For x €[a,b] write

Jo () =L ()= { [ o (¥) =S () ] = [ fo (%0) = fon (x0) ] } + [ Jo (%0) = fon (X0) ]-
Apply 7.7A to obtain
Jo (%)= ()= [ S () =S (€) ] (x = x0) + [ f, (%0) = fon (X0) ]-
Now use (1) and (2).]

9.4 CONVERGENCE AND UNIFORM CONVERGENCE OF SERIES OF FUNCTIONS

Just as the convergence of a series of real numbers is defined to mean the convergence
of the sequence of partial sums, the convergence of a series of functions is also defmed in
terms of the sequence of partial sums.

9.4A. DEFINITION. Let u;,u,,... be real-valued functions on a set E. We say that 2%_,u,
converges to the function f on E if the sequence of functions {s,}_; converges to f on
E, where s,=u,;+u,+ - -+ +u,. In this case we write

5 e

or
©

2 u,(x)=f(x) (x€E).

n=1

For example, if u,(x)=x" (—1<x<1), then X7_,u, converges to f on (—1,1) where
f(x)=x/(1—x) (=1<x<1). For

S um= 3 ¥

n=1 n=1

x=f(x) (—1<x<1).

We next define uniform convergence of series of functions.
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9.4B. DEFINITION. If u,u,,... are real-valued functions on a set E, we say that 3%_,u,
converges uniformly to f on E if {s,}r_, converges uniformly to f on E where
S,=u;+uy+ - -+ +u, In this case we write ‘

[o0)
> u,=f uniformly
n=1

or

§ u,(x)=f(x) uniformly (xEE).

n=1

From 9.3B we deduce the next result.

9.4C. THEOREM. Let u,,u,,... be real-valued functions on the metric space M. If
>%_,u, converges uniformly to f on M, and if each u, is continuous at the point aEM,
then f is also continuous at a.

PROOF: The sequence of functions {s,};., converges uniformly to f on M, where
s,=u;+u,+ -+ +u, Now each u, is continuous at a. By 53E, then, each s, is
continuous at a. Thus by 9.3B, f is continuous at a, which is what we wished to show.

9.4D. COROLLARY. If u,u,,... are continuous real-valued functions on the metric space
M, and if $_,u, converges uniformly to f on M, then f is continuous on M.
The series

o0

> x(1-x)"

n=0

converges on [0,1] to the function f where f(0)=0 and f(x)=1 (0<x<1). (For, if
0<x<1, then

ngox(l—-x)"=x’§0(l—x)"=x[ﬁ]= 1.)

Now, if
u,(x)=x(1-x)" (0<x<1),

then u, is continuous on [0, 1] and £%_.u_= f. Since f is not continuous on [0, 1], corollary
n n

n=1
9.4D assures us that 25_,u, does not converge uniformly on [0, 1].

Here is a famous test for uniform convergence called the Weierstrass M test.

9.4E. THEOREM. Let Z%_,u, be a series of real-valued functions on a set E. If there

exist positive numbers M, M,,..., with Z¥_ M, <o such that
o0 [oe}
Sum<S M, (xeE)
k=1 k=1

then Z§_,u, converges uniformly on E.

* That is, there exists N, €I such that for each k > N, we have |y, (x)| < M, for all x € E. See 3.6A.
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PROOF: Lets, =3} _ u, t,=2Z%_,M,. Then, form>n> N,

m m

Isa(x) =8, (0)=| 2 w(x)|< 2 |ue(x)l
k=n+1 k=n+1
< § Mo=t,—1t, (xEE). )
k=n+1

Since T_ M, <oo,{t,}-, is a convergent sequence and hence, a Cauchy sequence.
Thus given € >0, there exists N > N, such that

[t,—t,|<e (m,n>N).
But then (1) implies
s, (x)—s,(x)|]<e  (mn>N;x€E).

By 9.2F, {s,}y-, converges uniformly on E. This means that X{°_,u, converges uni-
formly on E, and the proof is complete.

For example, for all real x the series 3%_ sinnx /n? is dominated by =%_,1/n? which
converges. Hence, 2%_, sinnx/n* converges uniformly (— oo < x < o0). From 9.4D we
then know that the sum of ¥%_ sin nx/n? is continuous on (— 0, o).

We emphasize that in 9.4E the numbers M, must be independent of x.

The M test enables us to prove an important result on power series.

9.4F. THEOREM. If the power series
[o0)
> X , )]
k=0

converges for x = x,, (Where x;,%0), then (1) converges uniformly on [ — x,, x,] where x, is
any number such that 0 <x, <|x|.

PROOF: By 3.61, if (1) converges for x = x,, then (1) converges absolutely for any x
with |x| < x,|. In particular, if 0< x; <|x,|, then (1) converges absolutely for x = x,. That
18,

o0

> g xk < oo.

k=0

But
o0 o0
k

> qxt< Y |a x| (Ix] < xy)-
k=1 k=0

By 9.4E (with M, =|a,|x{), the series (1) converges uniformly for |x| < x,, which is what
‘we wished to show.

For example, the series 2°_,x*/k converges for —1 < x < 1. From 9.4F it follows that
S ,x*/k converges uniformly for —a<x<a where a is any number such that
0<a<l.

The series ¢_,x*/k! converges (to e*) for all real x. This series does not converge
uniformly on (— o0, 00). (Verify.) By 9.4F, however, for any R >0 the series S2_,x* /k!
does converge uniformly on [— R, R].

Dini’s theorem 9.2G yields the following result on series of nonnegative continuous
functions. This is called Dini’s theorem for series.
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9.4G. THEOREM. Let £%_,u, be a series of continuous nonnegative-valued functions on
the compact metric space M. If £°_,u, converges on M to the continuous function f,
then £5_,u, converges to f uniformly on M.

PROOF: Forné&llets,=u;+ - +u,. Since each u,(x)>0 for all x€ M, we have

Si(x)<sy(x) < K5 (x)< - (xeM).
Also, lim,_ s,(x)=f(x) (x€M). By 9.2G, then, the sequence {s,}y—; converges
uniformly to f on M. Hence, Z%_,u, converges uniformly to f on M. This completes the

proof.

n=

Exercises 9.4

1. Show that each of the following series converges uniformly on the interval indicated.
(a) 2,,_,—_'1_—;—2 (0< x < o0),
(b) Z5_ e ™" (0< x < 10).
(Hint: Find the maximum of xe ™ * on the interval.)
2. Does the series
> i

n=0 (1+X

converge uniformly on (— 00, 0)? (Hint‘ Find the sum of the series for all x.)
B | et Ola | < o0, prove that °_qa,x" converges uniformly for 0< x < 1.
4. If the series 2°_,a, converges and

w

f(x)= za,,x” (—1<x<1),
n=0

prove that f is continuous on (—1,1).
5. Show that the series

o0

2: nx?
3 3

ne1 1 + x

is uniformly convergent on [0,4] for any 4 >0.
Prove that

(ool o0

i | 3 22 LS
3 3 3
n

x| = o+ x =~ nd41
= n=1

6. Let A be a dense subset of the metric space M. If u,,u,,... are continuous functions
on M, and if X_,u, converges uniformly on A4, prove that Z%_,u, converges
uniformly on M.

7. Translate 9.2F into a criterion for the uniform convergence of a series of functions.

8. Let {u,}_, be a sequence of functions on E such that

s, (x)| <M (ne;x€E),

where s, =u,+ - - . Let {b,}°~, be a nonincreasing sequence of nonnegative
numbers that converges to 0.
Prove that £ ,b,u, converges uniformly on E.

(Hint: See 3.8C.)
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9. Use the preceding exercise to show that

sinx  sin2x  sin3x

1 2 3
converges uniformly on [8,7 /2] for any & >0.

9.5 INTEGRATION AND DIFFERENTIATION OF SERIES OF FUNCTIONS

Using results from Section 9.3 on integration and differentiation of sequences of
functions, we now investigate similar problems for series of functions.

9.5A. THEOREM. Let Z7_,u, be a series of functions in R [a,b] that converges
uniformly to f on [a,b]. Then f € R [a,b] and

Lbf(x)a'x= g, j;buk(x)dx.

That is,
b 2 X b
f > u(x)dx= 2 f u, (x)dx.
a k=1 k=1"4
PROOF: Lets,=u + -+ +u, Thens, € R[a,b]and {s,}5_, converges uniformly to f
on [a,b]. By 9.3G, fe §R[a b] and
b b
lim | s, (x)dx= x)dx. 1
Jim [s,(x)ax= [7(x) (1)
But, by 7.4C,
b
f s,(x)dx= f u(x)+ - +u,(x)]dx
a
= 2 f u, (x)dx.
Hence,

lim f bsn(x)dx=nlim 2 f u, (x)dx

N b .
=> f w (x)dx. )
k=119
The theorem follows from (1) and (2).

Theorem 9.5A says that a uniformly convergent series of functions may be integrated
term by term. That is, if
utu,+ - tu,+ (3)

converges uniformly on [a,b], then the iﬁtegral over [a,b] of (3) is equal to

b b b
fu,+fu2+---+fun+---
a a a
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For example, we have
1
1+x’
the series converging for —1<x<1. If |y|<]I, then, by 9.4F, the series converges
uniformly on [0,y] (or on [y,0] if y <0). By 9.5A we may integrate from 0 to y term by

term to obtain
7 x2dx— -+~
j(; ldx— f xdx+f dx f 0 dx.

2 3
y:iy
y= 45— =log(l+y)  (IyI<1).

l—x+x2=x*+.-- =

Thus

This result was previously obtained in 8.5F and 8.5G.
We next prove a theorem on term-by-term differentiation of series.

9.5B. THEOREM. If u,u,,... are functions each of which has a derivative at every point
of [a,b], if u, is continuous on [a,b] for k=1,2,..., if Z¥_,u, converges to f on [a,b],
and if £7_,u;, converges uniformly on [a,b], then

[oe]

f(x)= 2 u; (x) (a<x<b).
k

PROOF: Let s,=u;+---+u, Then {s,}r_, converges to f on [a,b]. Since s,
=uj+--+ +u, the sequence {s,}_, converges uniformly to g on [a,b] where g
Ek, u,. Thus by 9.3],
f'(x)=g(x) (a<x<b),.

which is what we wished to show.

Thus under the conditions of 9.5B, the derivative of
Uj+uy+ o Ut

is
wiru+-tu+--

For example, we have

1+x+x2+---+x"+~-=]_l , Q)

the series converging for |x| < 1. By 9.5B, if 0< a < 1, we may differentiate term by term
to obtain

_ 1
(1-x)’

provided that the series in (2) converges uniformly on [ — a,a]. But the ratio test may be

applied to show that the series in (2) converges for — 1< x < 1. Hence, by 9.4F, the series

in (2) does converge uniformly on [— a,a] so that our term-by-term differentiation of (1)
is justified. Note that, since @ was any number between 0 and 1, it follows that

I
(1-x)*

14+2x+3x2+ - nx"" 1+

(—a<x<a) (2)

14+2x+3x2+ - +nx"" 14 ... =

for all x with |x|<1.
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This last example illustrates the following general theorem on power series.
9.5C. THEOREM. If ¥%_,a,x” converges on (— S,S) for some S >0, and if
S(x)= S axn  (-5<x<5), ()
n=0
then f’(x) exists for — S <x< S and

fi(x)= § na,x"~'  (-S<x<8S). (2)

n=1

PROOF: By 3.6H the series (1) will diverge if |x|>1/L, where

L= lim sup\/la,,[

(or will converge for all real x if L=0). Hence, if L>0,

1
<.
S L

But the root test 3.6H applied to

o0

2 na,x"! 3)

n=1
shows that (3) will converge for |x|<1/L if L>0, and for all x if L=0. Hence, (3)
converges for |x| < S. By 9.4F, (3) will converge uniformly on [— T, T] where T is any
positive number less than S. Thus by 9.5B term-by-term differentiation of (1) is justified
for |x| < T. We obtain

f(x)= § na,x"~' (=T<x<T). (4)
n=1

The conclusion (2) follows since (4) holds for any T less than S.
By applying 9.5C to f’ (instead of f) we obtain
f(x)= X n(n—1)a,x"? (—S<x<98).

n=2

Proceeding in this fashion we may show that, under the hypotheses of 9.5C, the function
f has derivatives of all orders and

f®(x)= § n(n—1)---(n—k+1a,x""* (5)

n=k

If we set x=0, then all terms of the series vanish except the term for which n=k. We
obtain

f®0)=k!a,.
We thus have the following corollary of 9.5C.

9.5D. COROLLARY. If

f(x)= §a,,x” (—S<x<8)
n=0
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for some S >0, then, for any k € I,f®(x) exists for — S<x< S and

[oe]

fPx)= X n(n—=1)---(n—k+1a,x""*
n=k
Moreover,
f(k)(o)
a, = —7('—— (kE 1).

That is, if f(x)=27_¢a,x" (—S<x<S), then 7_ja,x" must be the Maclaurin series
for f.

Exercises 9.5

1. If %_ola,| < o0, prove that

n=0
I < 4
I(ﬂgoanx )dx=’§)n+l.

2. Use theorem 9.5C to deduce the equation

2 4
X, x
cosx=1—§+ﬂ—-~ (—oo<x<o0)
from the equation
3 5
. x> x
smx=x——jT+§!——-~ (—o<x< o).
3. Without finding the sum f(x) of the series
2 4 2n
Xt x X
l+—1T+—27!~+ +n!+"' (-OO<X<OO),

show that f'(x)=2xf(x) (— o0 < x < 0).

9.6 ABEL SUMMABILITY

We now take up another method of summability of series called Abel summability.
The proof that Abel summability is regular (see 3.9B) involves uniform convergence,
which accounts for the presence of this section in the current chapter.

9.6A. The Abel method of summability is illustrated by the following example. The
series
I-1+1—-14+1-="--- €))
is divergent. We form a power series by multiplying the nth term (n=0,1,2,...) of (1) by
x" to obtain
l—x+x?—x3+---. ()
For 0< x <1 the series (2) converges, and its sum is 1/(1+ x). Now
lim ——=1,
x—1- I+x 2
Thus although taking the limit as x—1~ in (2) term by term would give the divergent
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series (1), taking the limit as x—1~ of the sum of the series (2) yields the limit 1. We will
say, therefore, that (1) is Abel summable to 1. [Note that (1) is also (C,1) summable to

1
2]
Here is the general definition of Abel summability.

9.6B. DEFINITION. We say that the series %°_,a, is Abel summable to L if lim,_,,-f(x)
= [, where

o0
f(x)= > a,x" (0<x<1).*
n=0
In this case we write
>a=L (A).
n=0

In the example 9.6A we thus have q,=(—1)" (n=0,1,2,...),f(x)=1/(1+ x). From
9.6A it follows that

I-1+1-14+1=--- =1 (A).
Consider now the series
1-2+3—-4+--- (1)
which, of course, diverges. In this case we have
f(x)=1-2x+3x2—4x3+--- . (2)

(The ratio test shows that this power series converges for — 1 < x < 1.) But since
il
1+ x

theorem 9.5C implies

=—l+x—x2+x3—x*+--- (—1<x<1),

1
(1+x)?

Comparing this with (2) we see that f(x)=1/(1+ x)% Hence, lim__,-f(x)=1. By 9.6B
we conclude

=1-2x+3x2—4x3+---,

1-243-4+..- =1 (A).

[From Sections 2.11 and 3.9 we know that (1) is not (C,1) summable but is (C,2)
summable to }.]

The next theorem (called Abel’s theorem) yields the regularity of the Abel summability
method as a corollary.

9.6C. THEOREM. If %_.a, converges, then =%_oa,x* converges uniformly for 0< x
<L

PROOF: Given € >0, we may choose N €1 such that

n

>

k=m+1

<e (m,n>N).

* The Abel summability method thus makes sense only for series _a,, such that £%_,a,x" converges for
0<x<l.
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That is,
—e<a, ta, ,+ - +a,<e¢ (m,n>N).

If 0< x <1, then Abel’s lemma 3.8B (applied to {a;}%_,,+, and {x*}%_,. . ) implies

m+2+__ m+l.

—ex™<a, x"  +a,, ,x ctax"<ex

Hence,
n

2 ax-
k=m+1
If £,(x)=2"_oa.x* (0< x < 1), then (1) implies that | f,(x)—f,,(x)| <e for m,n > N and
0<x<1. By 9.2F, { f,}%_, converges uniformly on [0, 1]. Since f,(x) is the nth partial
sum of =¢_ya, x*, the theorem follows.

<ex"*'<e  (mn>N;0<x<1). (1)

9.6D. COROLLARY. Abel summability is regular.

PROOF: Suppose =%_,a, converges to L. We must show that 27°_qa, is Abel sum-
mable to L. That is, we must show that lim,_,-f(x)= L where

f(x)= io a,x".

But, by 9.6C, Z;°_,a,x" converges uniformly for 0< x < 1. Hence, by 9.4D, f is con-
tinuous on [0,1]. In particular, f is continuous at 1. Thus lim,_,-f(x)=f(1). Since
f()=2%_pa,= L, we have lim,_,-f(x)= L, which is what we wished to show.

Abel summability is a stronger method than the (C, k) method for any k. That is, for
any k€1, if °_qa, is (C,k) summable to L, then X3°_a, is also Abel summable to L.*
We will content ourselves with the proof of this for k=1.

9.6E. THEOREM. If

Sa=L (G, (1)
then n=:

>Sa=L (A

n=0

PROOF: Let s,=ay+a,+ - +a, (n=0,1,2,...). Then (1) means that the sequence
S»S1583-.. 18 (C, 1) summable to L. That is,

lim 0,=L
nh—o0
wheret
So+ s+ +s, 012
= n=0,1,2,...).
On n+1 ( bee)
Since (n+ 1)o,—no,_,=(so+ -+ +5,)—(so+ -+ +5,_)=s5,, we have
s
lim — = lim ("+]a,,—a,,_,)=L—L=0.
n—oo N n— oo n
" Hence,

n—o n n— o0 n n—oo N n—oo n n—1

a S, =S, s, _ S,
lim 2% = fim "=l = Jim 2" — lim (” 1)( 1)=0—0=0.

* There exist, however, series that are Abel summable but that are not (C,k) summable for any k.
+ Whether we denote (so+s,+ -+ +5,)/(n+1) by o, or o, is immaterial.
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By 2.5B, the sequence {a,/n}y_, is bounded. This shows that, for 0<x<1, the
S0 oa,x" is dominated by ZF_ Mnx" for some M >0. Hence, by 3.6B, 2_.a,x"

n=0

converges absolutely for 0< x < 1. Let
f(x)=ag+ayx+ax*+--- 0<x<1).
Then, since
R T T
l—x
is also absolutely convergent for 0 < x <1, we have by 3.5H,
f(x) &
( )= > c,x" (0<x<1)
l-x =
where ¢,=ay-1+a;-1+--- +a, 1. That is, c,=s,, so that
f(x) &
( )= > s,x” O0<x<1).
I—x n=0
Using 3.5H once more, we multiply (4) by (3) to obtain
f(x &
( )2= > (n+1)o,x" (0<x<1).
(1 _X) n=0
Hence,
f(x)=(1=-xP*3 (n+1)o,x" (0<x<1).
n=0
But

[ee]
S (n+1)x"=1+2x+3x24 -+ = —1 (—1<x<1),
n=0

(1-x)

so that -
(1=-x*3 (n+x"=1 (—1<x<1),

n=0
0
L=(1-x)*Y (n+1)Lx" (—1<x<1).
n=0
From (5) and (6) we have
f(x)-L=(1-x)*3 (n+1)(s,— L)x" (0<x<1).
n=0
Given € >0 choose N €1 such that
lo,—LI<5  (n>N).

(We can do this since lim,_, 0,= L.) Then, from (7)

N 0
| f(x)=LIK(1=x)* Z (n+1)]o,~ Lx"+5(1-x)* T (n+1)x"

n=1 n=N+1
N € )

<(1-x2 3 (n+ l)|o,,—L|+5(l—x)2 > (n+1)x"
n=1 n=0

<(1-x)*4+ %

©)
©)

4)

®)

(6)

™
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where 4 =3V_ (n+1)|o,— L|. Since (1—x)?<e/24 if 1—8<x<1, where §=Ve/24 ,
we have

| f(%) = L|<—A+5=e (1-8<x<1).

This proves lim,_,-f(x)= L, and the proof is complete.

x—1

Theorem 3.9C is an immediate consequence of 9.6E and 9.6D.

A series may, of course, be Abel summable even though it is divergent. The following
theorem, called Tauber’s theorem, gives a condition on a series which, together with the
Abel summability of the series, will ensure that the series converges. This theorem is the
ancestor of a large class of theorems called Tauberian theorems.

9.6F. THEOREM. If

2 a=L (A) (1)
n=0
and if
nan;o na,=0, 2)

then 3%_.a, converges to L.
PROOF: By (2) and 2.11B, the sequence {|na,|};’-, is (C,1) summable to 0. That is,

lim - 2 |kag| =0. 3)

n— oo

Given € >0, it follows from (2), (3), and (1) that there exists N € I such that

na,|<3  (n>N), (4)
1 < €
m > kal| <3 (n>N), (5)
k=1
and such that
- S K€ _1
‘L 3 aotl<3 (1 N<x<1). ©6)

For any n€ I and x€(0,1) we have

n 0 e o] n
L— > aq=L- 2 a x*+ 2 ax*— 2 aq
k=0 = = =

=L- 2 a x*+ 2 a (x*—1)+ 2 a,x*.

k=n+1
Hence,
n | ) n 0
lL— S a<|L— 3 axt+ D |- (1-x+ X |alxk
k=0 ‘ k=0 k=1 k=n+1
=1,+1,+1,, say. @)

For any n > N, choose x such that 1—1/n<x<1—1/(n+1). Then 1-1/N<1-1/n
< x<1, and so, by (6),

el B

bﬂm
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Now 1—x¥=(1—-x)(1+x+x3+--- +x*")<k(1—x), for any k€I. Hence, since
1—x<1/n, we have

1-x*<k(1-x)<X. 8)
By (8) and (5) we then have (since n > N)
n 1 n
L= |ak|(1_xk)<; > Ikak|<§'
k=1 k=1

To estimate /, we have, using (4),

xk e xk € i
h= 2 lkali-<§ X 4 ey, 2>
k=n+1 k=n+1 k=n+1
€ ol k €
K——— =—.
3(n+1) ,on 3(n+1)(1—x)

But x<1—-1/(n+1)and so 1-x>1/(n+1). Thus (n+1)(1—x)>1 and so
€

€
L 3Gina—x <3

From (7) we then have

<L +L+1;,<¢ (n>N),

n

2 q-L
k=0
which proves that X%_,a, converges to L.

In view of 9.6E, we see that the theorem in 3.9D is a consequence of 9.6F.

Exercises 9.6

1. Show that the following series are Abel summable:
@ 1=3+1—d+-0.
b)) 1-3+6—-10+15—---.

2. If
2 a=L (A)
n=0
and
2 b,=M (A
n=0
prove that
> (a,+b)=L+M (A).
n=0
3. If
agta,+a,+---=1L (A),
prove that
0+ay+0+a,+0+ay,+--- =L (A).

4. If 2¥_oa,L" converges, where L>0, show that X_,a,z" converges uniformly
0<z<L).
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5. Prove that if

f=2 5 (0<x<), (*)

n=1

then

[oe]

1 1
fo f(x)dx= 21 IR
Is the integral proper or improper? [Hint: Integrate (*) from 0 to y where 0<y <.
Then use 9.6C to evaluate the limit of the right side as y—17.]
6. If 2°_,a, and Z°_,b, are convergent series of real numbers, if

n

= > ab,_, (n=0,1,2,...),
k=0

and if £°_ ¢, converges, show that

o0 o0 o0
($a)($0)-5
n=0 n=0 n=0

[Hint: First show that

[ee] >} e o]

(£ an)( S o) S e

n=0 n=0 n=0
for 0< x <1.] This result becomes false if the hypothesis that 2;°_,c, converges is
deleted.

9.7 A CONTINUOUS, NOWHERE-DIFFERENTIABLE FUNCTION

As another application of uniform convergence we construct a real-valued function F
that is continuous on R' but does not have a derivative at any point of R'. We do this
by defining F as the sum u;+u,+ -+ +u,+ -+ of a uniformly convergent series of
continuous functions, where the graph of u, has roughly 2-10" sharp corners in every
interval [x, x + 1] and hence, wiggles quite a bit. The cumulative effect of all this wiggling
yields the desired result.

9.7A. THEOREM. There exists a real-valued function F such that F is continuous on R,
but such that F’(a) exists for noa€R'.

PROOF: In the proof we use only decimal expansions that do not end in a string of
9’s.

We begin by defining the function f as follows: For any real x let fy(x) be the distance
from x to the nearest integer. For example, if x=7.3, then the integer nearest to x is 7.
Hence, fy(x)=distance from 7.3 to 7=0.3. Similarly, f,(—6)=0,f,(1.83)=0.17. [The
graph’of f, consists of straight line segments joining {m,0) to (m+3,3> and (m+ 1,4
to (m+1,0) for m=0,%1,=*2,....] It is clear that

Jo(x+1)=fo(x) (xER ').

Now define fi(x) as the distance from 10x to the nearest integer. For example,
f1(7.64)=distance from 76.4 to 76=0.4. We note that

fi(x)=fy(10x)  (xER").
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Continuing, we define f,(x) as the distance from 100x to the nearest integer. For

example, £,(0.678)=0.2. In general for k=0,1,2,... we define
S (%) =fo(10%x) (x€RY).

F(x)= sz() (xERY).

NoW define F as

Since

0 x 0 1
Z fk( )<< _Z_k (XER‘),
k=0 10% i=o 10

M

the M test 9.4E shows that the series in (1) converges uniformly on R!. Since each f, is

continuous on R, it follows from 9.4D that F is continuous on R'.

Now we will show that if a€ R, then F’(a) does not exist. To do this it is enough to

show the existence of a sequence {x,}%_, such that lim,_ _x,=a but such that

n—oo”'n

F(x,) = F(a)
m —n 2

n—o0 X,—a
does not exist.
Suppose a=a,-a,a,a5 - a, -+ . Forn€ 1 let
Xp=0qo a Ay "4, _ lbn n+1" "

where b,=a,+1if a,#4 or 9 and b,=a,— 1 if a,=4 or a,=9. Thus x,—a= 107", an

SO lxm,,_,oo .= a. For example, if
a=0.27451,
then
=0.37451
=0.28451
=0.27351
=0.27461.

For this example we have
Jo(x3) = fo(a) = —0.001,
fi(x3) = fi(a)=+0.01,
fa(x3) = fo(a)=—0.1,
f3(x3) = fr(a)=0,
Je(X3)=f(@)=0  (k=>3).

[To see why we want x;=0.27351 and not 0.27551, calculate £,(0.27551) — fy(a).]
This is a numerical example of the following fact. For any n€ 1,

fe(X)=f(@)=%10""  (k=0,1,...

Je (%) = fi (@) =0 (k> n).
Thus

F(x)=F(a) 2 f(x)=hila) QO =106n
2 -2 104(+ 107"

x,—a 10%(x,— a)

k=0

n—1
k=0

k=0

d

@)
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That is, for any n€ I, [F(x,)— F(a)]/(x, — a) is the sum of n terms each of which is +1
or —1. It follows that [F(x,)— F(a)]/(x,—a) is an odd integer if n is odd while
[F(x,)— F(a)]/(x,—a) is an even integer if n is even. This proves that lim,_ [F(x,)—
F(a)]/(x,— a) does not exist, which is what we wished to show.

9.7B. The above example of a continuous, nowhere-differentiable function is due to
van der Waerden. An earlier example, due to Weierstrass, is given by the function
o0
cos 3"x
F(x)=2 5 (xeR").

n=0

Since the series is uniformly convergent on R, it follows from 9.4D that F is continuous
on R'. We omit the proof that F’(x) exists for no x. However, note that if we
differentiate the series term by term we obtain —Z%_(3)"sin3"x, which diverges when x
is not a multiple of «. This gives reason to believe that F is nowhere differentiable.

Again it is the fact that the graph of the function cos3"x wiggles rapidly (for large n)
that makes this example work.

Exercises 9.7

1. Let a=0.39261
(a) Calculate x,,x,,x; for this a.
(b) Calculate fy(x,)— fy(a),
Si(xx) = fi(a),
Sa(xz)— f(a),
S3(x3) — f3(a).
(¢) Do the same for x;.
(d) Use (b) and (c) to show that [F(x,)— F(a)]/(x,—a) is even and that [F(x;)—
F(a)]/(x;—a) is odd.
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THREE FAMOUS THEOREMS

10.1 THE METRIC SPACE C|a,b]

In each of the next three sections we will prove a well-known and important theorem
in analysis. Each of these theorems may be viewed as a theorem about a particular
metric space—namely, the space of continuous functions on a closed bounded interval
endowed with a metric, which we now proceed to define. We begin by defining the norm
of a continuous real-valued function f on a closed bounded interval [a,b]. (Note that the
absolute value | f| of such a function is also continuous and hence, by 6.6G, attains a
maximum at some point of [a,b].)

10.1A. DEFINITION. Let f be a continuous real-valued function on the closed bounded
interval [a,b]. We define || f||, called the norm of f, as

I fll=, infl‘b' f(x)l

)
a

This norm has properties similar to the norm for 2. Specifically (compare with 3.10E),

10.1B. THEOREM. The norm for continuous real-valued functions f,g on the closed
bounded interval [a,b] has the following properties:

I fII>0, (1)
I fII=0 if and only if f(x)=0 (a<x<b), 2)
lefli=lel-Il /I (c areal number), 3)
I f+gll <l flI+1gll (4)

PROOF: All but property (4) are obvious. To establish (4) we have, for any x €[a,b],

| £+l < S+ <N T+l gl
max | f(x)+g()l <l f1+1gl-

a<x<
The left side of this inequality is precisely || f+ g||, and (4) follows.

and hence,

280
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10.1C. From 10.1B it follows easily that if we define p by
p(e:¥)=lle—¥l,
then p is a metric for the space of continuous real-valued functions on [a,b]. For
example, if ¢,y,n are such functions, then
p(e.n)=lle—nll=l(e—¥)+F—n)l.
By (4) of 10.1B we then have
p(@.n) <lle— Y|+ ¥ —nll=p(e,¥) +p(¥,n).

Hence, p satisfies the triangle inequality. The other requirements for a metric are easily
verified. This leads us to the following definition.

DEFINITION. By C|[a,b] we mean the metric space of all continuous, real-valued func-
tions on the closed bounded interval [a,b] with metric p defined by

o(f8e)=If—gl (f,g€EC[ab]).

The “points” (or elements) of C[a,b] are thus functions on [a,b].
It turns out that convergence of a sequence { f,}-, in C[a,b] with respect to the

metric of C[a,b] (see 4.3C) is precisely the same as uniform convergence on [a,b] of the
sequence of functions { f,}5- ;.

10.1D. THEOREM. The sequence { f,}%-, in C[a,b] converges to f € Cl[a,b] (with re-
spect to the metric p) if and only if { f,}%_, converges uniformly to f on [a,b].

PROOF: Suppose that { f,}7., converges to f with respect to the metric p. This means
that given € >0 there exists N €/ such that

p(fu) =N fa=fli<e  (n>N). M
or
 max | f(x)=f(x)|<e  (n>N). 2)

But (2) is equivalent to
| fi(x)=f(x)|<e (n>N;a<x<b). 3)
(Why?) From (3) we see that { f,}°_, converges uniformly to f on [a,b].

Conversely, the fact that (3) implies (1) shows that if { f,}>_, converges uniformly to f
on [a,b], then { f,}_, converges to f with respect to the metric p of C[a,b]. This

n=1

completes the proof.
From 10.1D we deduce the following important result.
10.1E. THEOREM. The metric space C[a,b] is complete.

PROOF: Let { f,}%., be a Cauchy sequence in Cl[a,b]. (See 4.3D.) Then given ¢>0
there exists N €I such that

p(fpy)<e  (mn>N).

That is,
| fu=full <€ (m,n>N)

o a?f’éblf’" (x)=f,(x)|<e (m,n>N).
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This implies

| £ (x)—f,(x)| <€ (m,n>N;a<x<b).
By 9.2F, { f,}_, converges uniformly on [a,b] to some function f. Moreover, f € C|a,b]
by 9.3C. But then, by 10.1D, { f,}-, is convergent to f with respect to p. Hence, every

Cauchy sequence in C[a,b] converges to a point in C[a,b], which proves that C[a,b] is
complete.

We will need the following corollary.

10.1F. COROLLARY. Let /and m be any real numbers with /< m. Let C* be the subset
of Cla,b] consisting of all f &€ C[a,b] such that

IS f(x)<m (a<x<b).

Then C* (with the metric of C[a,b]) is a complete metric space.

PROOF: Since C*C Cla,b] and C|a,b] is complete, it is sufficient, by 6.4C, to prove
that C* is a closed subset of C[a,b]. Accordingly, suppose f € C[a,b] is a limit point of
C*. Then there exists a sequence { f,}_, in C* that converges (with respect to the
metric of C[a,b]) to f. Hence, by 10.1D, { f,}-, converges uniformly to f on [a,b], and
so { f,}-, converges pointwise to f on [a,b]. That is,

nangof,,(x)=f(x) (a<x<b). (1
But each f, is in C* and so
IS f,(x)<m (a<x<b;nel). (2)

From (1), (2), and 2.7E, it follows that /< f(x)< m for all x in [a,b]. Thus f€ C*. We
have shown that C* contains all its limit points. Hence, C* is closed, which is what we
wished to show.

Exercises 10.1

1. If L is the real-valued function on C[a,b] defined by

b
L(f)=fa~f (fEC[a,b]),

prove that L is continuous on C[a,b].

2. Let T be a contraction (6.4E) on C[a,b]. Show that T is then a uniformly continuous
function on C{a,b].

3. Let C'[0,1] be the subspace of C[0,1] consisting of all f€C[0,1] such that f is
differentiable and f'€ C[0,1]. Give C'[0,1] the metric of C[0,1]. Define T:C'[0,1]
—C|[0,1] by

Tf=f (fEC‘[O,l]).
Show that T is not continuous.
4. Let m,n€ R with m<n. Let

A={fEC[a,b]|m<f(x)<n} (a<x<b).

Prove that A4 is an open subset of C[a,b].
5. Let B[a,b] be the set of all real-valued bounded functions on [a,b). For f € B[a,b] let

I fllp= Lub. [f(x)],
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and define a metric p for B[a,b] by

e(f.8)=Ilf-gls (f.gEB[ab]).

Prove that B[a,b] is complete.
6. Prove that C[a,b] is not compact.

10.2 THE WEIERSTRASS APPROXIMATION THEOREM

By a polynomial function (or, more simply, a polynomial) we mean a function P that
can be expressed as
P(x)=apx"+ax""'+:-- +a,_,x+a, (xER"

where n is some nonnegative integer and ay,q,,...,q, are real numbers. The restriction of
a polynomial function to the closed bounded interval [a,b] is clearly continuous on [a,b].
On the other hand, there exist functions in C[a,b] that are not polynomials.* (For
example, a function in C[a,b] that fails to have a derivative at some point of [a,b]
cannot be a polynomial.) Weierstrass showed, however, that every function in Cla,b] is
uniformly approximable by polynomials. This result is called the Weierstrass approxima-
tion theorem, which we now state.

10.2A. THEOREM. Let f be any function in C[a,b]. Then, given € >0, there exists a
polynomial P such that

|P(x)—f(x)|<e (a<x<b). )
10.2B. We will give a proof of 10.2A presently. However, we will first give some
reformulations. Note that (1) of 10.2A may be written
I1P—fl<e
or, in terms of the metric p for Cla,b],
p(P.f)<e.
Thus 10.2A says that any open ball B[ f;€] about f in C[a,b] contains a polynomial. By
5.5D, this means that every f € C|[a,b] is the limit point of the set & of all polynomials.
Hence, 10.2A may be rephrased as
I. The set @ of all polynomials is dense in the metric space C|[a,b).
Another reformulation of 10.2A is obtained as follows. The statement I is equivalent
to saying that for each f& C[a,b] there is a sequence {P,}%_, of polynomials that
converges in C[a,b] to f. By 10.1D this happens if and only if

II. For each f € C[a,b] there is a sequence of polynomials { P,}°_, such that { P, }%_,
converges uniformly to f on [a,b].

Hence, 10.2A, 1, and II are all equivalent.
10.2C. Before we give a proof of 10.2A we wish to observe the following lemma.

LEMMA. It is sufficient to prove 10.2A for the special case in which [a,b]=[0,1].

* More precisely, there exist functions in C[a,b] that are not the restriction to [a,b] of polynomials.
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PROOF: Suppose 10.2A were true for C[0, 1]. We will show that 10.2A would then be
true for C[a,b], where [a,b] is any closed bounded interval. Thus if f € C[a.b] and € >0,
we must find a polynomial P such that

|P(x)—f(x)|<e (a<x<b). (1)
Define g by
g(x)=f(a+[b—a]x) O<x<l).
Then g(0)=f(a),g(1)=f(b). Indeed, by 5.3D, g is continuous on [0, 1]. Thus by our
assumption that 10.2A holds for C[0, 1], there is a polynomialQ such that

le(r)-2)I<e  (0<y<l).
If we set y =(x—a)/(b— a), then

g =g(3=5)=f(a+(b-a)5=5) = (x).

We then have

’f(x)—Q(Z:Z)'<e (a<x<b). @)

If we define P by

P@=2(3=5)

then, by the binomial theorem, P is a polynomial (because Q is). Inequality (1) then
follows from (2), and the proof is complete.

10.2D. We now prove 10.2A for C[0, 1]. This proof is due to Bernstein and makes use
of the so-called Bernstein polynomials.
For any f &€ C[0, 1] we define a sequence of polynomials {B,};_, as follows:

B,,(x)=j(2)x"(l—x)"_kf(§) O<x<l:inEl). (1)
Here
(Z)= k!(nni k)l

The polynomial B, is called the nth Bernstein polynomial for f.
Given € >0 we will show that there exists N €I such that

| /= B,lI<e (n>N). (2)
This will show that {B,}%_, converges uniformly to f on [0, 1] and, in particular, will

prove 10.2A. .
We need a considerable amount of preliminary computation. For any p.g€R we

have, by the binomial theorem
(") prgn = (p+ )’ €I (3)
o )ptatTi=(pta)yt  (n€l)
k=0
Differentiating with respect to p we obtain

> (Rt ~lam*=n(p+a) ™"
k=0
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which implies

n

> E(Q)ptat=prramt (e, 4)

Differentiating once more we have

2 k—Z(Z)p""q""‘=p(n— D(p+q)" +(p+q)""",

n
k=0
and so
S k2 (n e 1 ne2, P e
2 ?(k)p"q "=p2(1—;)(p+q) H(p+)" ()
Now, if x €[0,1], set p=x,g=1—x. Then (3), (4), and (5) yield
D () =xr=1, (6)
k=0
. k(n n—
2 5 (s -0
k=0

K k(1 — \n—k— 2( _ l) X
2 2( ) (1—=x) x4 1 . + ot
From these equations it follows easily [on expanding (k/n— x)?] that
- 2 x(1—
Z(E—x)(l’;)xk(l—x)"—k x0=x 0<x<1) (7)

n n
k=0

By 6.8C, f is uniformly continuous on [0, 1]. Hence, given € >0 there exists § >0 such
that

[f() =<5 (x=y|<&xy€E[01]).
Now choose N €I such that
L <5 )

VN

and such that

e
TR ®

(We may assume, of course, that || f||>0.)
Fix x €[0, 1]. Multiplying (6) by f(x) and subtracting (1) we obtain, for any n€ I

f(x)=B,(x)= 2 {f(x)—f(%)](;:)xk(l—x)""‘=2’+2” (10)
k=0

where X’ is the sum over those values of k such that

k I
;—xl<4\/; , (11
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while =” is the sum over the other values of k. If & does not satisfy (11), that is, if
lk/n—x|>1/Vn , then (k—nx)?=n?lk/n—x>>Vn® . Hence,

i o 9-4(3) ()t -

<2”[I f(X)|+’f(f)H(Z)xk(1—x)"—k

<2 fIZ7( g )x* (1 —x)"* <2”Ff3“2”(k—nx)2(2)xk(l —x)"
n

<M i (k-—nx)z(Z)x"(l——x
> k=0

n
Hence, by (7)

2 2
7)< ISl (1= x)< ||f||‘
Vn? Vn
If n> N, it follows from (9) that 1/Vn <e/4| f|| and so
|2//|<___

Moreover, if n> N and if k satisfies (11), then, by (8) and (11), |k/n— x| <8 and so
sor-r(E)] <5

lZWﬂEIPurd%”G%quy%

and so by (6)

Thus

<—§ 2 (Z)xk(u—x)"_k,

121<5-
Thus from (10),
| 7()= By (0| <D [+ 2 |<5+ £ =e
Since x was any point in [0, 1], and n any integer with n > N, this shows that
| f/(x)=B,(x)|[<e  (0<x<L;n>N).
This establishes (2), and the proof is complete.

10.2E. The theory of probability throws some light on the preceding proof. Suppose a
coin is tossed and that the probability of heads is x while the probability of tails is,
accordingly, 1 — x. If the coin is tossed n times, then the probability of exactly k heads in
the n tosses is (})x*(1— x)"~X. [This expression occurs in the definition of B,(x).]

The expected number of heads in n tosses is nx. (This is a technical probabilistic fact
that is surely believable even to those who do not know the precise definition of
“expected number.”) Indeed, one feels sure that one is more likely to obtain precisely &
heads in n tosses for the value (or values) of k close to nx than for those k that are far
from nx. Thus X’ refers to the k for which precisely k heads in n tosses is “more
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probable,” while 3" refers to the k for which precisely k heads in n tosses is “less
probable.”

Indeed, the proof of 10.2A that we have given is essentially the same as one of the
more familiar proofs of the “weak law of large numbers.”

10.2F. We have proved that the set of a// polynomials is dense in C[0, 1]. It is natural to
ask whether we actually need a/l polynomials.

Specifically, let N={n}2, be a strictly increasing sequence of positive integers, and
let ¥, be the set of all polynomials P of the form

P(x)=ag+ax"+ax"+ - +a,x"™ .
That is, P € P, if P is a constant plus a polynomial whose exponents all belong to N.
Here is a striking result (whose proof is beyond the scope of this book).

THE MUNTZ-SZASZ THEOREM. The set ¥, is dense in C[0, 1] if and only if
oo
>
; =00.
i=1""
Thus for example, the set of all polynomials of the form
ag+ a2+ apxt+ apxt+ - +a x>

is not dense in C[0,1] since here, n,=2' so that 2,?°=,—nl-.=2‘,.’°=12i < 0. On the other

i

hand, the set of all polynomials with even exponents is dense in C[0, 1].

Exercises 10.2
1. Calculate By, B,, and B, for f where
f(x)=x*  (0<x<]1).

Then graph these functions.

10.3 PICARD EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS

Many problems in a course in elementary differential equations involve the solution of
equations of the form

dy

dx =f(x.y) (1)
with initial condition

y (xo) =Yoo (2)
Here f is, of course, some real-valued function defined on all or part of R2. By a solution
we mean a function ¢ with domain containing some interval [xo— 8,xo+ 6] such that
@(x0) =Y, and

()= [x@(x)]  (Jx=x)|<8). 3)

This is equivalent (via integration) to the equation

¢(-\')=,»'o+f:f[w(f)]dt (1x = xo| < 8). )
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Thus the question of the existence of a solution to the problem posed by (1) and (2) is
equivalent to the existence of a function ¢ satisfying (4) for some §. We now prove a
theorem, due to Picard, which gives conditions on f sufficient to ensure both the
existence and the uniqueness of a function ¢ satisfying (4).

THEOREM. If f is continuous on some rectangle D c R? whose interior contains
{xgyo).* and if there exists M >0 such that

| f(xp) =f(xp ) S Myi=yo|  (xpy0.{x.y20ED), )
then there exists § >0 and a unique function @ such that (4) holds.

PROOF: Since f is continuous on the compact set D, we know (by 6.6B) that there
exists k>0 such that

[ f(x2)I<k  (Kx.y>€D).
Choose 6 >0 such that
(xYYED i |x—xo <8,|y—yol < kb ©)
and such that
Mé<1 (7)

where M is as in (5).
Let C* be the subset of C[x,—8,x,+ 8] consisting of all functions ¢ that are
continuous on [x,— 8,x,+ 8] and such that

|p(x) =yol <AB.  (Jx— x| < ).

Then, by 10.1F, C* is a complete metric space. Note that by (6) we have {¢,p(#)) € D if
|t — x| <6 and pE C*.
We now define a function T on C* as follows: For ¢ € C* define To=1 as

v =rot [11lbe0]d (x=xi <8) o

Then o satisfies (4) if and only if Tp=g.

We will show that T is a contraction (6.4E) on the complete metric space C*. First we
show that T maps C* into C*. Indeed, if o € C* and ¢ = To, it is easy to show that ¢ is
continuous on [x,— 8,x,+ 8]. Moreover, if |x — x,| < §, then

W(x)=yol=1 [ [ t0(1) ]de] < klx = xo < 3.
X0
Hence, |¢(x)—yo| < k8 if |x — xo| <8, and so ¢ € C*. Hence, T: C*—C*.
To show that T is a contraction suppose @,,p, € C* and let ;= To,,{,= To,. Then,

from (8), if |x — x,| < 6, we have

W) =4 = [ (S[ee(0] [ Loa(n)]}ds

X0

and so

=401 <] [ 70 (0] [0

* To be precise, say D = {(x,y)l |x —xo| < a,|y —yol < b} for some a>0,b>0.
+ The condition (5) is called a Lipschitz condition.
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Using (5) we then obtain

1 (x) = ¥y(x)| <

Mj;xhpl(t) — (1)l at

< < MS||p;— ;-

X
foonwl—q»zudt

Thus
Y1 — ¥l < M8 ||, — @,
or
| To, — Topy|| < M8 ||y — ;|-
With respect to the metric p for C* this reads
p( Ty, Top,) < Mp(,, 9y).

In view of (7) this proves that T is a contraction on C*. Hence, by 6.4F, there is precisely
one ¢ € C* such that To=¢. But the definition (8) of T shows that Tgp= ¢ means that
(4) holds. This completes the proof.

Our proof uses both the continuity of f and the Lipschitz condition (5) to show that a
solution to
dy
Ix =f(x.y),  y(x0)=)o

exists and is unique.
It is possible, using a different method of proof, to show that a solution exists
assuming only the continuity of f but not the Lipschitz condition. See Section 10.6.
However, the Lipschitz condition is necessary in order to prove that the solution is
unique. For example, both ¢,(x)=0 and ¢,(x)=x>/27 are solutions to

b _ 2/3 -

There is thus no unique solution to (9). We leave it to the reader to show that
f(x,y)=y?%? does not satisfy a Lipschitz condition in any rectangle D about <0,0).
(Show that

| f(0.y)=f(0,0)|<My  (KOy)ED)
holds for no M.)

Exercises 10.3

1. Show that ¢ is a solution to

if and only if

x)= * t+ (1) ]dt.
o(x)= ["[r+e()]
Define T as follows: For any ¢ let T =4y where

\,b(x)=f0x[t+<p(t)]dt.
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Let gy =0. If ¢, = Tgp,, show that ¢,(x)=x?/2!. If p,= To,, show that @,(x)=x?/2!+
x3/3!. In general, if ¢, = Tg,_,, show that g,(x)=x2/2!'+ x>/3!+ -+ + x"/n!. Then
show that

. _1; n =X __ v
"li)r{}o%(x)—nli{{}oT%(x) e*—x—1.

Verify that ¢(x)=e*—x—1 is a solution to the original problem.
Compare this method of solution with the proof of 6.4F.
2. Use the same method to solve

y' =y, y(H)=1
3. Use the same method to solve

y=x-y, y0)=L

10.4 THE ARZELA THEOREM ON EQUICONTINUOUS FAMILIES

10.4A. In higher analysis it is often useful to know when a sequence of continuous
functions en [a,b] will have a uniformly convergent subsequence.
For an example where this does not happen consider { f,}%_, where

Si(x)=x" (0<x<1).

As we have seen, { f,}_, converges pointwise on [0, 1] to the discontinuous function f
where

f(x)=0 (0<x<1),

fH=1
Any subsequence of { f,}5_, must, therefore, also converge pointwise to f. Hence, by
9.3C, no subsequence of { f,}¥_, can converge uniformly on [0,1], since f is not

continuous.
The condition we are seeking involves the concept of equicontinuity.

10.4B. DEFINITION. Let [a,b] be a closed bounded interval. The subset % of Cl[a,b] is
said to be equicontinuous if given € >0, there exists § >0 such that

| f(x)=fW)I<e  (Ix-y|<8fET).

That is, % is an equicontinuous subset of Cla,b] if, given €>0, there exists &
independent of f such that | f(x)—f(y)|<e if |x —y| < 8. The same § must work for all
SEF as well as for all x,y.

A condition sufficient to ensure that a sequence of continuous functions on [a,b] has a

uniformly convergent subsequence will come out of the next result (which is known as
Arzela’s theorem or as Ascoli’s theorem).

10.4C. THEOREM. Let & be a bounded equicontinuous subset of the metric space
Cla,b). Then ¥ is totally bounded.

PROOF: Given € >0 we must show that there are a finite number of subsets A4; of
Cla,b] such that diam4;<e and ¥ C U 4,.
Since % is bounded there exists M >0 such that

p(£LO)=IIfll<M  (fET).
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Since ¥ is equicontinuous there exists 8 >0 such that
f)-f()<7s  (x=x|<8SET). (1)

Subdivide [a,b] by points a=xo< x; < -+ <x,=b where x;, , — x; <8 (j=0,1,...,n—1).
Subdivide [— M, M] (thought of as an mterval on the y ax1s) by points -M =yo<)i
<+ <y,=M such that y, ., —y,<e/15 (k=0,1,. —1). Thus the rectangle a < x
< b, — M < y <M is subdivided into subrectangles of base less than § and height less
than €/15. For any f€ & define g& C[a,b] as follows: For each x; (j=0,1,...,n) let
8(x;)=yy(; wWhere k() is chosen so that

|18(9) =S () =17cn=F () <75 - by

This is possible because of the way we chose the y’s. Then define g so that the graph of g
consists of straight-line segments joining successively the points {xg,8(xo)>,{x;,8(x,))
.,{x,,8(x,)>. Then, for j=0,1,...,n—1 we have
l8(x51) =8 (X< 18 (x41) = f () + 1 f(X40) = () +] f(x) = g(x))],
and so, by (1) and (2)

€

g )—8I<5+ 5+ s=%-

Since the restriction of g to [x;,x;,,] is linear, it follows immediately that
lg(x)—g(x )|<— (5 <x<x41;/=0,1,...,n—1). (3)
Now for any x €[a,b] choose j so that x; < x < x;, ;. Then

mw%ﬂmﬁﬂﬂw(WM()ﬂNHﬂﬂfUN
Thus by (3), (2), and (1),

€ €
|g(X) f(x)|< + = 15 —g 3"
Thus for each f€ %, we have shown there is a g such that
€
lg=fII<5-

The open balls B[ g;¢e/3] have diameter <2¢/3 and & is contained in their union. But
there can be only a finite number of distinct g! For each g is determined by its values at
the n+1 points x4, xy,...,x,. Moreover, for each j,g(x;)) must be one of the m+1
numbers yg,»,,...,»,,- Hence, there are at most (m+ 1)"*' functions g. Thus there are a
finite number of the open balls B[ g;¢/3], each with diameter less than ¢, and their union
contains ¥ . This completes the proof.

Here is the result we have been looking for.

10.4D. coroLLARY. If { f,}%_, is a sequence in C[a,b], and if the functionsin { f,}7_;
form a bounded equicontinuous subset of C[a,b], then { f,}_, has a subsequence that
converges uniformly to some function in C|[a,b].

PROOF: Let ¥ be the set of functions in { f,}%_,. Thatis, ¥ ={ f,.f,,...}. By 104C,
-F is totally bounded. Hence, by 6.3H, { £}, has a Cauchy subsequence { f, }¥-,
(with respect to the metric for C[a,b]). Since C|a,b] is complete (10.1E), the sequence
{ fo }&=1 is convergent to some f& C[a,b]. By 10.1D, this implies that { f, }¥°_, con-
verges uniformly to f on [a,b]. This proves the corollary.
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Exercises 10.4

1. Prove that the family {sinax}{_, is not an equicontinuous subset of C[0,7].
2. Let {¢,}7_, be any sequence of functions on [0, 1] such that

lp.(x)| <M (0<x<I1;n€l)
and
lp,(x)I<M  (0<x<I;n€l)

for some M >0. Prove that {¢,}_, has uniformly convergent subsequence.

3. Let { f,}%_, be a sequence of continuous functions on [0,1] that converges
uniformly on [0, 1]. Prove that the family of functions f, is equicontinuous.

4. Give an example of a sequence of functions f, € C[a,b] that forms an equicontinuous
family but such that { f,};°_, has no uniformly convergent subsequence.

10.5 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 9 AND 10.
I. The Stone-Weierstrass theorem and an application.

10.5A Weierstrass proved his theorem 10.2A in 1885. The proof we gave was published
by Bernstein in 1912. In 1937 M. H. Stone presented a truly remarkable generalization of
the Weierstrass theorem. This result applies to an arbitrary compact space in place of
[a,b]. Moreover, in place of the set of polynomials it treats an arbitrary algebra of
continuous functions that contains the constant functions and separates points. We will
now define “algebra” and “separates points.”

Let E be any set and let F be a family of real-valued functions on E. We say that Fis
an algebra if it is closed under the operations of addition, multiplication, and multiplica-
tion by constants. That is, F is an algebra if

f,g€EF imply f+g€F and fg€F.
fEF,ceER imply c¢f€EF.

We say that a family G of real-valued functions on E separates points of E if,
whenever x,y are distinct points of E, there exists g € G such that g(x)# g(»).

10.5B If M is a compact metric space, we denote by C (M) the set of all continuous
real-valued functions on M. If we define

| Jll= max| f(x)]  (fEC(M))
and

o(fe)=I/-gl  (f.gEC(M))
then p is a metric for C (M). This may be shown in precisely the same way as the special
case M =[a,b] is handled in 10.1. Moreover, as with C[a,b], convergence with respect to
the metric for C (M) is precisely uniform convergence on M.

EXERCISE. Let M be a compact metric space and suppose A CC(M). If 4 is an
algebra, prove that 4 (the closure of 4 in M) is also an algebra. (This is important for

the Stone-Weierstrass theorem.)

10.5C Here is one version of the Stone-Weierstrass theorem.
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THEOREM. Let M be a compact metric space. Let 4 be a subset of C (M) such that

A is an algebra, (N
A separates points of M, 2)
A contains the constant functions. (3)

Then A= C(M). That is, 4 is dense in C(M).
We outline the proof of the Stone-Weierstrass theorem in a sequence of lemmas, some
of which are supplied with a sketch of proof.

EXERCISE. Give all details in the proofs of the following lemmas.
We assume that M is compact and that 4 is a subset of C (M) such that (1), (2), and
(3) hold.

LEMMA 1. If fEA, then | f|EA.

SKETCH OF PROOF: Given €>0 there exists a polynomial P such that

[Ixl=P(0)<e (=l fI<x<]fI).
Hence,

[l 7()=P[f(1)]|<e  (reM).
But Pof € 4. Hence, | f|EA.
LEMMA 2. Suppose f,g € A. Then max( f,g) € 4 and min( f,g)EA.

LEMMA 3. Suppose x,,x,E M and x,# x,. Then there exists f € A such that
0< f(x)<1 (xeM),
f(x)=1,

f(x)=0 for all x in some open ball about x,.

SKETCH OF PROOF: By assumption (2) there exists P €A such that P(x,)# P(x,). Let
P(x)= P(x,)
P(x)=——"—7— XEM).
=P M)
Then ®(x,)=1 and ®(x) <3 for all x in some open ball about x,. Let
¥(x)=2max[®(x)—%,0] (xEM),
and
f(x)=min[¥(x),1] (xeM).
Then f € 4, and f has all the required properties.
LEMMA 4. Suppose K is a proper compact subset of M, and x, € M — K. Then there

exists f €A such that
0< f(x)<1 (xeM),

f(x)=1,
f(x)=0 (xEK).

SKETCH OF PROOF: Lemma 3, theorem 6.5G, and lemma 2.
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LEMMA 5. Suppose that K, and K, are disjoint compact subsets of M. Then there
exists f €A such that

0< f(x)<1 (xeM),
f(x)=1 (xE€K)),
f(x)=0 (xEK)).

SKETCH OF PROOF: For each x, € K, there exists F €4 such that
0K F(x)<1l  (xEM),
F(x)=0 (xEK,),
F(x)>1 for all x in some open ball B about x,.
Let .
®(x)=2min[ F(x),3] (xEM).
Then
0<P(x)<1 (xeM),
®(x)=0 (xEK,),
P(x)=1 (xE€B).

Now use Heine-Borel and lemma 2.
Here is the completion of the proof of the theorem.

LEMMA 6. If fE C(M), then fE A.

SKETCH OF PROOF: We may assume f is not constant. Then g=f+|| f| is nonnegative

valued and not identically zero. Let h= ”—iﬂ Then 0< h(x) <1 for all x. It is sufficient

to show that A€ 4. Given € >0 choose n € I such that %<€. For k=0,1,...,n—1 let

Ek={xeM|h(x)<1;-}, Fk={xEM|h(x)>k+l }

n
Then there exists f, € 4 such that
0< fr(x)<1 (xeM),
Se(x)=0  (xEE),

S (x)=1 (xEF,).
Let
n—1

1
P()=1S f)  (xem).
k=0
Then P €4 and
1
|h(x)—P(x)|<; (xeM).
Hence, ||h— P|| <€ so that hE A.

10.5D We mentioned in 10.3 that the Lipschitz condition (5) is not necessary to prove
the existence (as opposed to the uniqueness) of a solution to (1) and (2) of that section.
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We now state this as a theorem and outline the proof (to which the Stone-Weierstrass
theorem and the Arzela theorem are relevant). First we state a
LEMMA. Let

D ={{x.)|lx— xo| < @, |y =yl < b}.

Under the hypotheses of the theorem in 10.3, there exists a solution ¢ to
@(X)=y;>+f flte(0)]at
*o

which is defined on the entire interval [x,— A, xy+ h] where

h=min(a, %)
and k is any upper bound for {| f(x,y)| |<x,y>€ D}.

The importance of the lemma is that 4 depends only on D and the bound for f but not
on the constant M in the Lipschitz condition.

EXERCISE. Prove the lemma and fill in the details of the proof of the following.

THEOREM. Let D be as above. If f is continuous on D, then there exists § >0 and a
function ¢ such that

o(x)=ro+ [ flHo(n]d  (Ix=x]<?). *)
(Hence, y = @(x) is a solution to dy /dx =f(x,y),y (xo) =Yo)

SKETCH OF PROOF: There exists a sequence {P,}_, of polynomials in x and y such that
{P,}_, converges uniformly to f on D.
There exists £ >0 such that

| f(x )<k ({xy>ED)
and
’Pn('x’y)lgk (<x,y>eD;n=1,2,...).

Each P, satisfies a Lipschitz condition on D. Hence, there exists ¢, such that
eu()=vo+ [ P[o,(n]dr (x—xl<3)
Xo

where § =min(a, b/ k). These ¢, form an equicontinuous family on [x,— 8, x,+ 8] so that
a subsequence of {¢,} converges uniformly on [x,— 8, x,+ 8] to a function ¢. This ¢ is a
solution to (*).

II. The Tietze extension theorem
This is a theorem about the extendability of continuous functions.
10.5E THEOREM. Let F be a closed subset of the metric space M. Let f be a continuous,

bounded, real-valued function on F. Then there exists a continuous real-valued function
¢ on all of M such that

p(x)=f(x) (xEF),
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and
Lub. |p(x)[= Lu.b.| f(x)|.

We first need a

LEMMA. Let F be a closed subset of the metric space M. Let g be a continuous,
bounded, real-valued function on F. If

6= lub.|g(x)|,
x€F
then there exists a continuous real-valued function # on M such that
< (xem)
and

g(x)—h(x)|<T  (xeF).

BEGINNING OF PROOF: Let
A={xEF|—0< g(x)< —

)

B

w—-/ W

{xEFI——<g(x)<

(PSS Y

.

C={xEF|§<g(x)<0

——

and let

g P(x,A)—p(x,C)
3 p(x,d)+p(x,C)

where p(x,A) is the distance from the point x to the closed set 4.

h(x)= (xeM),

EXERCISE. Finish the proof.

SKETCH OF PROOF OF THEOREM: It is sufficient to consider an f such that
Lub. f(x)=1, glb. f(x)=—-1
xXEF

xXEF

Define a sequence { f,}%_, of continuous functions on M as follows:

Let f, be the h of the lemma corresponding to g=/.

If f,,....f,_, have been defined, let f, be the & of the lemma corresponding to
g=f—(f,+--- +f,_,). Then for every n=1.2..... we have

hel<d(2) e

and

P =LA+ +4wII<(5)  eh),

Then 3%_, f, converges uniformly on M to a function .



MISCELLANEOUS EXERCISES 297

EXERCISE. Fill in the details and finish the proof.
10.5F The following corollary is known as Urysohn’s lemma.

EXERCISE. Let 4, B be disjoint closed subsets of a metric space M. Prove that there
exists a continuous function f on M such that

0< f(x)<1 - (xeM),
f(x)=0 (x€A),
f(x)=1 (xeB).

ll. MISCELLANEOUS EXERCISES

1. Let
SLi(x)=x"(1-x) 0<x<L;nel)
g, (x)=x"(1—x") O0<x<Linel).
Does { f,}-, converge uniformly on [0, 1]? Does { g,}%_,?
2. Let { f,}°-, be a sequence in C[0,1] such that lim,_, f,(0) exists. Suppose that for
every g € C[0,1] such that g(0)=0, the sequence { f,g}%_, converges uniformly on
[0, 1].
Must { f,}°_, converge uniformly on [0, 1]?
3. Let
L(x)=(1+x"""  (0<x<2;n€l)

so that each f, is differentiable. Show that { f }¥_, converges uniformly to a
function that fails to be differentiable at some point on (0,2).
4. Let r,r,,... be an enumeration of the rationals in [0,1]. For n=1,2,... let

t,(x)=0 (0<x<r,),
L(x)=~=  (r,<x<l)
n
and define
f)= 3 () @<x<l).

n=1

Prove that f is continuous at every irrational. (See 6.9G.)
5. Suppose { f,}-, is a uniformly convergent sequence of real-valued functions on a
subset of E of R' such that

fi(x)<4 (x€EE;nel)

for some 4 >0. If f(x)=Ilim f,(x) for x € E, prove that

Jim [ L £ ()] =L S
6. Prove that
1 1 1 _ 1
I-g+g-T3+ = v [7+2log(1+V2)].



298 THREE FAMOUS THEOREMS

7. Prove that
2 X lox 100 X L,
log(x+ Va4 1 )=x—5- T +35 5~ 355 7+

for0<x<I.
8. Let

= X " 1.
fix=(1+2)"  (xeR%nel).
Prove that

nlirgof,,(x)=e"

uniformly on every closed bounded interval of R'.
9. Let {a,}®_, be a nondecreasing sequence of positive numbers. Suppose

oo
> asinkx
k=1
converges uniformly on [— 1, 1]. Prove that lim,_, na,=0.
(Begin this way: For —1<x<1and n€/ let

n
s,(x)= kzl a,sinkx

and let ¢, =s,, —s,. Show that
m

a .
—)>na,,s1n 2

"( 4n
10. Show that
o0
2 x"sinnx
1 n

converges uniformly on [—1,1].
11. Let f€ C[a,b]. If

flx’f(x)dx=0 (n=0,1,2,...),
0

show that f(x)=0 for all x €[a,b].
12. Prove that C[0, 1] has a countable dense subset.
13. Prove that C[a,b] is connected.
14. Suppose { f,}<_, is a convergent sequence in C[0,1]. For each x€[0,1] let

h(x)=lub.{ fy(x).fo(x),--- }-
Prove that A€ C[0, 1]. Show that this need not be true if only pointwise convergence

for { f,} is assumed.
15. Define T: C[0,1]—C[0, 1] as follows: For ¢ € C[0,1] let Tp=1 where

¢(x)=f0xq>(t)dz [0<x<1].

Show that T is not a contraction but that 72= T T is. Note that 7 has a fixed poin.t.
16. Suppose that T: M— M where M is a complete metric space. Assume also that 7" is
a contraction for some n € I. Prove that T has a fixed point.
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THE LEBESGUE INTEGRAL

There are many ways to develop the Lebesgue integral. The development we will give
is by no means the most elegant one, but it is probably the easiest to follow.

It is the utilization of the concept of measure that makes the Lebesgue integral
different from the Riemann integral. Where the definition of the Riemann integral
involves subdivision of [a,b] into closed intervals, the definition of the Lebesgue integral
involves subdivisions of [a,b] into much more general kinds of sets called measurable
sets.

We begin by leading up to the definition of “measurable set.”

11.1 LENGTH OF OPEN SETS AND CLOSED SETS

11.1A. Let [a,b] be a closed bounded interval in R'. If G is a nonempty open subset of
(the metric space) [a,b], then, by 6.1B, G is the intersection of [a,b] with an open subset
of R'. From 5.4F it then follows that G is the union of finitely or countable many
pairwise disjoint* intervals /, where each I, is open in [a,b]. (Remember that intervals of
the form [a,c) or (¢,b] as well as (c¢,d) are open in [a,b]) In any event, if G is a
nonempty open subset of [a,b], then G= U ,I, where each I, is an interval and no two of
the I, have a point in common. This enables us to define the length |G| of an open
subset G of [a,b].

DEFINITION. If G is an open subset of [a,b],G= U I, then the length |G| of G is defined
as

1Gl= 211,
where |I,| denotes the length of the interval I,.
Thus |G| is the sum of the lengths of the intervals comprising G.

* Saying that the /, are pairwise disjoint means that no two of the I, have a point in common.

299
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We leave it to the reader as one of the exercises to show that if G, and G, are open
subsets of [a,b] with G, C G,, then |G,| <|G,|. It then follows that |G| < b— a for any set
G open in [a,b].

It is also easy to verify that

LU LU - UL|<|L)|+|L]+ - +]|1]

where the I; are intervals. (See exercise 2 of this section.) We now generalize this result.

11.1B. THEOREM. If G,,G,,... are open subsets of [a,b], then*

<316, (1)

n=1

(e o]
U G,

n=1

PROOF: For each n€l we have G,=uU_,I. If G=uU;,G,, then G is open (by
5.4C) and so G= U ,J, where the J, are pairwise disjoint intervals. Given € >0 choose
N €1 so that 32_ 5, ,|J,| <e. Then |G|<ZN_,|J,|+ €. Now for each n=1,...,N let K,
be an open interval such that K, cJ, and |J,|<|K,|+¢/N. Then

N
|G|< X |K,|+2e. ()

n=1

Moreover, the union U,,N=1I—<-,, is closed (5.5G) and bounded, and is thus compact. Since
UX_,K, is contained in U®_,G, there are a finite number of the /;'—say

I AN FCRON fig
—such that
N
U Encjknllu ERNCP /i
n=1
Hence,
N
U K,c'u--- Ul
n=1
Since the K, are disjoint (why?) we have
N

2K <O UL < |12+ - + |1
n=1
and hence,
N 00
:Slk"nl< ESIC%L . (3)
n=1 n=1

From (2) and (3) it follows that |G| <Z%_,|G,| +2¢. Since € was arbitrary we must have
|G| < Z2%.,|G,| which is precisely the desired inequality (1).

The next result will enable us to define the length of a closed set.

11.1C. THEOREM. If G, and G, are open subsets of [a,b], then
|G\ +|G,| =[G U G| +|G N Gy (1)

* It is possible, of course, that Z%.,|G,| = oo.
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PrOOF: Consider first the case where both G, and G, are unions of a finite number of
intervals. Then G, U G, and G, N G, are also unions of a finite number of intervals. It is
then easy to see that the characteristic functions

X6 X6 XG6,uGy XG,n G,
of these sets are Riemann integrable on [a, b]. Moreover, for any x €[a,b],
X6,(%) + X6,(X) = X6,06,{%) + X6,n 6,(X)- (2)
Indeed, if x is in both G, and G,, then both sides of (2) are equal to 2. If x is in neither
G, nor G,, then both sides of (2) are equal to 0. Finally, if x is in one but not both of G,
and G,, then both sides of (2) are equal to 1. If we now integrate (2) from a to b, we
obtain (1). Hence, (1) holds when G, and G, are unions of a finite number of intervals.
Now for the general case. We have G,=uU ;> ,/,,G,= U J,. Given ¢>0 choose
N €1 such that

o0 o0

2 Li<e X |l<e
n=N+1 n=N+1
Let
N 00 N o0
Gi=y1r1, 6¥t*= U I, Gx=UJ, G*= U J,
n=1 n=N+1 n=1 n=N+1

Then |G,|=|G*|+|G**| for i=1,2, and |G}**| <e. Hence,
|Gi|+1Ga| =1G|+]GT*| +|G3| +]G3™|
<|G}|+|G3|+2e
Since G}, G5 are finite unions of intervals, we can use the first part of the proof to obtain
|G| +|G,| <|GFU G3|+|Gf N G*| +2e.
But Gf U G C G,uU G,, and G¥n G3 C G,N G,. Hence,
|G\|+] G| <|G U G|+ |G, N Gy| +2e.

Since € was arbitrary this implies

|Gi|+]Gal |G U Gy +]GiN Gy ©)
On the other hand, we have G, U G,=(GfU G§)U G¥*U G3* and so, by 11.1B,
|G1U G,| < |GF U G3| +2e. 4)
Similarly, G, N G,=(G{U GF*)N(G3U G3*)C(GF¥N G3)U GF*U G3*, and so
|G,N Gy <|(GFN GFU GF*U GF*| <|GF N GF| +2e. 5)

Hence, again using the first part of the proof together with (4) and (5), we obtain
|G\l +1Go| > |GF|+|G3|=|GY U G| +|GF N G|
>(1G,U Gyl —26) + (|G, G| —2e).
Since € was arbitrary, this implies
|G i +]Gal > |G U Gyl +[G,N Gy (6)

The conclusion (1) now follows from (3) and (6).

11.1D. If Fis a closed subset of [a,b], then F’ (the complement of F relative to [a,b]) is
an open subset of [a,b] by 5.5I. Consequently, if G is any open subset of [a,b], then
G— F=G N F'is open by 54E, and thus |G — F| is already defined. We then define |F|
as follows. .
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DEFINITION. Let F be any closed subset of [a,b]. Then the length |F| of F is defined as
|F|=]G|-|G—F| (1)
where G is any open subset of [a,b] such that GO F.

It is necessary to show that this definition of | F| does not depend on which open set G
is used. That is, we must show that if G, and G, are both open sets containing F, then
|Gi| = |G — F|=[Gy| —|G,— F| (2)
so that | F| can be calculated using either side of (2). Now by 11.1C (with G,— F instead
of G,) we have, since FC G|,FCG,,
|G| +|G,— F|=]G,U G| +|(G;n G,) — F|.
Also, by 11.1C,
|G = F|+|Gy|=1G,U Gy| +|(G;n G,) - F|.
Equating the left sides of the last two equations will establish (2). Hence, | F| in (1) does
not depend on G.
In particular, it follows that
|[Fl=b-a~|F|
for any closed subset F of [a,b].

Exercises 11.1

1. If G, and G, are open subsets of [a,b], and if G, C G,, prove that |G,|<|G,|. (Hint:
Write G, = U I,,G,= U ,J,. First show that every /, is contained in some J,. Then
group an arbitrary finite number of the /, according to the J, in which they are
contained.)

2. If I,,...,1, are open subintervals of [a,b], prove that

LU - UL+ + [ (+)
Do not use 11.1B as () was used in the proof of 11.1B. (Hint: Forj=1,...,k let x;
be the characteristic function of /, and let x be the characteristic function of
I,u--- Ul,. Show that x,x,,...,X, are in ®[a,b] and that
x(x)<x(x)+ - +xe(x) (a<x<b).
Then integrate.)
. True or false? If G is an open subset of [a,b] and |G|=0, then G=.

. True or false? If F is a closed subset of [a,b] and |F|=0, then F=@.
5. Show that the Cantor set of 1.6D has length 0.

S W

11.2 INNER AND OUTER MEASURE. MEASURABLE SETS .

We now define the inner measure and outer measure of an arbitrary subset £ of [a,b].

11.2A. DEFINITION. If E C[a,b], then mE, called the outer measure of E, is defined as
mE=glb.|G|

where the g.l.b. is taken over all open sets G that contain E.
The inner measure mE of E is defined as

mE=1ub.|F|
where the lL.u.b. is taken over all closed set F contained in E.
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Thus mE is computed by open sets “closing down” on E. From the definition it
follows that mE <|G| whenever G is open and G D E. Similarly, mE >|F| if F is closed
and FCE.

11.2B. DEFINITION. The set E C[a,b] is said to be measurable if mE=mE. In this case
we define mE, the measure of E, as

mE=mE= mE.

Thus mE and mE are defined for all subsets E of [a,b]. However, mE is defined only for
those E whose inner measure and outer measure are equal. We will presently show that
there exists a set E such that mE 7 mE—that is, there exists a nonmeasurable set.

We now begin to develop properties of inner and outer measure.

11.2C. THEOREM. If E C[a,b], then mE < mE.

PROOF: Let F be any closed set contained in E and let G be any open set containing
E. Then FCE CG, and so |F|=|G|—|G— F|. It follows that

|F|<|G]|.
Take the g.Lb. over all such G. We obtain |F|< mE. Now, we take the L.u.b. over all
closed F C E. We obtain mE < mE, which is what we wished to show.

11.2D. THEOREM. If E C[a,b], then
mE+ mE'=b—a
(where E'=[a,b]—E).

PROOF: Let G be any open set containing E. Then G’ is closed, and G’ E’. We have
|G|+ mE’>|G|+|G’|.
Hence, since |G|+|G’|=b—a, we have
|G|+ mE' > b—a.
Taking the g.1.b. over all open G O E we obtain
mE+ mE'> b—a. (H
Now if F is any closed set with F C E’, we have F'5 E and so
FE -+ |F| < |F'|+|F|,
mE+|F|<b—a,
ME+ mE'< b—a. 2)
The theorem follows from (1) and (2).

As a consequence of the preceding two theorems we obtain the following corollary.

11.2E. COROLLARY. Let E C[a,b]. Then E is measurable if and only if
mE+ mE’' < b—a. (1)

PROOF: For any set E we have (by 11.2D with E and E’ interchanged)
mME'+ mE=b—q. (2)
Now, if E is measurable, then mE = mE. Hence,
ME'+ ME=b—q,
which implies (1).
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Conversely, suppose (1) holds for some E C #a,b]. Since (2) also holds for £ we may
subtract (2) from (1) to obtain mE —mE < 0. This, together with 11.2C, implies mE =mE.
Hence, E is measurable, and the proof is complete.

The following criterion for measurability is sometimes used as the definition of
measurability.

11.2F. THEOREM. The subset E of [a,b] is measurable if and only if given € >0 there
exist open sets G, and G, such that G,D E,G,D E’, and |G, N G,|<e.

PROOF: First suppose that E is measurable. Given € >0 there exist open sets G, and
G, such that G;D E,G,D E’ and such that |G,|<mE+¢€/2,|G)|<mE'<e/2. (This 1s
just a consequence of the definition of outer measure.) Then, by 11.2C,

|G1N Gy|=|G|+|Gy| =[G, U Gy
and so
|G\N G,y|<ME+mE’'+¢—|G,U G,|.
But since G,D E,G,D E’, we have G,U G,=[a,b]. Hence,
|G\N Gy|<ME+mE’—(b—a)+e.
Since we are supposing that E is measurable, 11.2E then implies
|G,N Gyl <e.

This proves half the theorem.
Conversely, suppose E C[a,b] and that for any € >0 there exists open sets G,.G, with
G,DE,G,D E",|G;N Gy <e. We have

mE+ mE’' <|G,|+]|G,|=|G,U G,|+|G,N G,
and so
mE+mE' < b—a+e.

Since € was arbitrary, this implies mE + mE’ < b—a. By 11.2E, the set £ is measurable.
This completes the proof.

11.2G. coroLLARY. If E is a measurable subset of [a,b], then E’ is also measurable
and

mE’'=(b—a)—mkE. H

PROOF: Since the criterion for measurability in 11.2F is symmetric with respect to £
and its complement E’, it is clear that the measurability of £ implies the measurability of
E’. But then mE=mE and mE’'=mE’, and so (1) follows from 11.2D.

We next show that open and closed sets are measurable.

11.2H. THEOREM. If G is an open subset of [a,b], then G is measurable and mG =|G]|.
Also, if F is a closed subset of [a,b], then F is measurable and mF=|F]|.

PROOF: If G is open, it is obvious that mG =|G|. Now G=U;_,J, where the J, are
intervals open in [a,b]. Given € >0 we can define K,,...,K,, as in the proof of 11.1B.
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Then UX_,K, is closed and is contained in G. Also, by (2) of 11.1B,
N

U K,

n=1

mG < + 2e.

Hence, mG <mG + 2¢. Since € was arbitrary, it follows that G <mG. This and 11.2C
prove that G is measurable. Moreover, mG=mG =|G|.

Now let F be a closed subset of [a,b]. Then the complement G of F is open and hence,
measurable. By 11.2G, F is measurable and mF=(b—a)— mG=(b—a)—|G|. But by
definition, |F|=(b—a)—|G|. Hence, mF=|F|, and the proof is complete.

11.2I. We leave it for the reader to show that a subset £ of [a,b] is measurable and
mE =0 if and only if E is of measure zero according to 7.1A.

Consider, for example, the Cantor set K of 1.6D. The complement K’ of K (relative to
[0,1]) is the union of open intervals whose lengths add up to 1. Hence, K’ is open and
mK’'=|K’|=1. Therefore, by 11.2G, K is measurable and mK=(1—-0)— mK’'=0. This
shows that the Cantor set is measurable and has measure zero (even though K is not
countable).

It is obvious that if mE =0, then any subset of E is measurable and has measure zero.

Exercises 11.2

1. Show that E C[a,b] is measurable if and only if given € >0 there exist a closed set
F CE and an open set G D E such that |G|—|F|<e.

2. If ¢ and d are in (a,b) and ¢ < d, prove that [¢,d) is measurable.

If E Cc[a,b] and mE =0, prove that E is measurable and mE =0.

4. Let E be a measurable subset of [a,b]. Prove that

mA=m(ANE)+m(ANE")

for every subset 4 of [a,b]. (Hint: Use 11.2F.)

If ECla,b], if x€E’, and if E U {x} is measurable, prove that E is measurable.

If E| is a measurable subset of [a,b] and if mE, =0, prove that E, U E, is measurable.

If E|,E,C[a,b], if mE,=0, and if E,U E, is measurable, prove that F, is measurable.

.If a<c<b and E is a measurable subset of [a,b], show that EN[a,c] is a
measurable subset of [a,c].

9. Prove that the characteristic function of the Cantor set is in %} [0, 1].

10. If E C[a,b], show that there exists a subset H of E such that H is of type F, and

mH=mE.

w

% N o »

11.3 PROPERTIES OF MEASURABLE SETS

In this section we will show (among other things) that- both the union and the
intersection of a countable number of measurable sets are again measurable sets. The
first theorem is needed to show that the union and the intersection of two measurable
sets are measurable.

11.3A. THEOREM. If E, and E, are subsets of [a,b], then

mE,+ mE,>m(E,U E,))+ m(E, N E,), )
and

mE,+ mE, < m(E,U E;)+ m(E,N E,). (2)
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PROOF: Given €>0, choose open sets G, and G, such that G,D E,,G,D E,, and
€

mG, <mE,+ >

% . mG,<mE,+
Then
mE,+ mE,+ e>mG,+ mG,+|G,|+|Gj|.
By 11.1C, this implies
mE, +ME,+€>|G,U G,|+|G;N G,
But G,uU G, and G,N G, are open sets containing E,U E, and E, N E,, respectively.
Hence,
ME,+ ME,+e¢>m(E,U E,)+ m(E,N E,).
Since € was arbitrary, (1) follows.
Applying (1) to E| and E; we obtain
mE|+mE;> m(E|U E;)+m(E{N E;).
In view of 1.2H this implies
" mE|+mE}> m(E,N E,) + m(E,UE,).
From 11.2D we then have
(b—a—mE)+(b—a— mE,) >[b—a— m(E\NE)) |+ [b—a— m(E\UE))]
which, on simplification, yields (2). This completes the proof. \

11.3B. coroLLARY. If.E, and E, are measurable subsets of [a,b], then both E,U E, and
E,N E, are also measurable. Moreover,

mE,+ mE,=m(E,U E,)+ m(E,N E,). )

PROOF: By hypothesis mE;=mE;=mkE; for i=1,2. From 11.3A and 11.2C we then
have

mE, + mE,>m(E,U Ey))+m(E\N E,) > m(E,U E))+ m(E,NE,))>mE,+mE,. (2)
Since the extreme left and right sides of (2) are equal, we may put equals signs in place of
the > signs in (2). Hence,

m(E,U Ey))+m(E,N Ey)= m(E,U E))+ m(E N E,).
By 11.2C this implies #%(E,U E))=m(E,U E,) and m(E, N E,)=m(E,N E,). Hence,

E,UE, and E,N E, are measurable. We may then substitute m for m and m in (2) to
obtain (1).

11.3C. coroLLARY. If E, and E, are measurable subsets of [a,b], then E,— E, is also
measurable. In addition, if E,C E,, then m(E,— E,)=mE,— mE,.

PROOF: By 11.2G, E; is measurable. But £, — E,= E, N E;. Apply 11.3B to show that
E,— E, is measurable.
Now if E,C E|, then E,= E,U(E,— E,) and m[E,N(E,— E,)]=m@=0. Hence,

mE,=m[ E;U(E,— Ey)]=m[ E;U(E,— E;) |+ m[ E;n(E, - E;)].
Applying 11.3B to the right-hand side we then have
mE,=mE,+m(E,—E,),

which is what we wished to show.
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11.3D. THEOREM.

(a) If E|,E,,... are any subsets of [a,b], then

(UE) S s,

n=1 n=

8

(b) If E|,E,,... are pairwise disjoint subsets of [a,b], then

m( U E,,)>
n=1

PROOF: (a) Given €>0, choose the open set G, so that G,D E, and |G,|<mE,+
€/2". Then UG, is an open set (5.4C) that contains U E,. Hence, m(UZE,)

n

<|UuP.,G,|. By 11.1B we then have

m(i ) EIIG |<2 (7, + 5¢)

n=1

mE,.
1

1M

and so
0 o0
m( U E,,)< > mE,+e.
n=1 n=1

Since € was arbitrary, this proves (a).
(b) Now suppose E|, E,,... are pairwise disjoint. Then, by (2) of 11.3A,

m(E\U Ey) > mE, + mE,.
By induction, it is easy to show that
m(E,uEzu-~-uEN)>mE+mE2+~~+mEN (N€eI). (1

For any N €1 we then have U E,D UY_|E,, and so m(U>_,E,) >m(U™_ E,). This

and (1) prove that

n=1

o N
( n=1 ) n=
Letting N approach infinity establishes (b).
The crucial results on measurable sets now follow. The first deals with the union of
countably many disjoint measurable sets. The next two deal with “increasing unions”
and “decreasing intersections” of measurable sets. The last states the measurability of

the union and intersection of countably many measurable sets.

11.3E. coroLLARY. If E| E,,... are pairwise disjoint measurable subsets of [a,b], then
U E, is measurable and
L )
m( U E,,)= > mE,.
n=1 n=1

PROOF: By 11.3D and 11.2C we have (since mE, = mE,=mE,)

§ mE,,<m( U E,,)<r7( U E,,)< § mkE,.

n=1 n=1 n=1 n=1
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Since the extreme left and right sides are equal in (1), all four quantities in (1) must be
equal. The corollary follows..

11.3F. coroLLARY. If E|,E,,... are measurable subsets of [a,b], and if E,C E,CE,

C---, then U, E, is measurable and

m( G E,,)= lim mE,, (1)

n—oo
n=1

PROOF: The sets £,E,— E,E;—E,,...,E,— E,_,,... are measurable by 11.3C, and
are pairwise disjoint. Hence, by 11.3E,

E\U(E;—E\)U---U(E,—E,_)U---
i1s measurable and
m[E,U(E,—E)U- " U(E,—E,_))U-""]

% n (2)
=mE,+ >, m(E,—E,_,)=mE,+ lim Y m(E,— E,_)).
k=2 0 k=2

But E,U(E,—E)U -+ U(E,—E,_,)U--- is precisely U;° E, (verify). Moreover, by
11.3C,

2 m(E,—E )= 2 (mE,—mE,_,)
k=2 k=2

=(mEy,— mE,)+(mE;— mE))+ -+ +(mE,—mE, _))
=mE,—mkE,.

Thus U2, E, is measurable and, from (2),

o0
m( U E,,)=mE,+ lim [ mE,—mE,].
n—oo

n=1

This implies (1), and the proof is complete.

11.3G. coroLLARY. If E|,E,,... are measurable subsets of [a,b] and if E,D E,DE,
D---, then N2 E, is measurable and

n—oo

[ee]
m( N E,,)= lim mE,.

n=1

PROOF: For each n&€/ the set E, is measurable by 11.2G, and mE,=b—a—mE,.
Moreover, E{C E;C E;C ---. Thus by 11.3F, u;>_,E, is measurable and

[>o]
m( U E,;)= lim mE,=b—a— lim mE,.
n=1 n—oo n—oo

But U2 | E, is the complement of N, E,. Hence, N E, is measurable and

n=1

b—a—m( N E")=b—a—"lLrngn.
n=1

The corollary follows.
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Finally we show that U;>_ |E, and N;_,E, are measurable for any measurable sets
E,E,,....

11.3H. coroLLARY. If E|,E,,... are any measurable subsets of [a,b], then U;_ E,, is
measurable and

n=1

®© 0
m(UE,,)<2mE,,. 0)
n=1
Moreover, N E, is measurable.

PROOF: We have
o0
U E,=E\U[E,—E|JU[E;—(E\UEy)]U---
n=1

U[E,—(E,UE,U - UE,_)]u---. (2)

The sets on the right of (2) are measurable and are pairwise disjoint. Thus by 11.3E, the
right side of (2) is a measurable set. Hence, U ;. ,E, is measurable. The inequality (1)
then follows from part (a) of 11.3D, since we can replace 7 by m.

That N2, E, is measurable then follows from the fact that N °_, E, is the complement

of Uy E,.

11.31. By the symmetric difference of the sets A and B we mean the set of points that
are in one of the sets but not in both. That is, the symmetric difference of A and B is the
union of the sets 4 — B and B— A. The following theorem shows that sets of measure
zero have no influence on measurability.

THEOREM. If E| and E, are subsets of [a,b], if the symmetric difference of E, and E,
has measure zero, and if E| is measurable, then E, is measurable.
Moreover, mE,= mkE,.

PROOF: We have
E,=[E\U(E,—E\)]—(E,— Ey). (D

By hypothesis, both E,— E, and E,— E, are measurable and have measure zero. Since
E, and E,— E, are disjoint, 11.3E implies that E, U (E,— E,) is measurable and m[E,U
(E,— E)]=mE,+0=mE,. But, since

EI_EZC[EIU(E2_EI)]’
it follows from (1) and 11.3C that E, is measurable and
mE,=m[ E\U(E,— E\)]|—m(E,— E;)=mE,—0=mE,.
This completes the proof.

11.3]J. The preceding theorems show that any operations involving countable unions
and countable intersections of measurable sets will yield measurable sets. For this
reason, it is far from elementary to show that there is such a thing as a set which is not
measurable. We now indicate how to show the existence of a nonmeasurable set. It is
convenient to construct this set on a circle C of circumference 1. This circle can be
identified with the interval [0, 1) in an obvious way.
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If x,y € C, we say that x~y if the arc length from x to y is a rational number. It is
then clear that

X~X; )]
if x~y, then y~x; )

and
if x~y and y~z, then x~-z. 3)

We then divide C into subsets £, such that x and y are in the same £, if and only if
y~x. Each E_ thus contains a countable number of points (since the rationals are
countable). Moreover, on the basis of (1), (2), (3) it is easy to show that the E, are
pairwise disjoint. Hence, there must be an uncountable number of E,. Now let V' be any
subset of C such that V' contains precisely one element x, from each E,. Thus no two
distinct elements x,,x, in V can satisfy x,~xz. (We must use the so-called axiom of
choice in order to be assured of the existence of such a set V.) We will show that V is not
measurable.

Let r|,r,,... be the rationals in [0, 1) with r,=0. For each n€ I let V, be the subset of
C obtained by rotating V' (counterclockwise) through an arc length of r,. Then V,=V.
Moreover, the V, are congruent to one another. We will now show that the V), are
pairwise disjoint. If not, then, for some m and n with m#n, V,,N V, contains a point y.
But since y € V,, there exists x, € V' such that the arc length from x, to y is r,,. Similarly,
since y € V,, there exists xz € V such that the arc length from x; to y is r,. The arc length
from x, to x4 is thus rational. It follows that x, = x;. But then we have r,, =r,, which is a
contradiction. This shows that the ¥, are pairwise disjoint.

Finally, every x € C lies in some V,. For x € E, for some «, and thus the arc length
from x, to x is equal to some r,. Hence, x € V,. We thus have the following situation.

(@ C=Vur,uvau:---,
(b) the V, are pairwise disjoint,
(c) the V, are congruent to one another.

If V=V, were measurable, then, by (c), all the V, would be measurable and
mV,=mV, for all n. But then, by (a), (b), and 11.3E,

mC=mV,+ mV,+mV,+---,
mC=mV+mV+mV+---. 4)

The left side of (4) is finite. Hence, mV+ mV+mV + --- must converge. This is
possible only if m¥V'=0. But then (4) would imply mC =0, which is a contradiction, since
mC = 1. This contradiction proves that V' is not measurable.

Exercises 11.3

1. Prove that every subset of [a,b] that is of type F, is measurable.

2. True or false? The union of uncountably many measurable subsets of [a,b] must be
measurable.

3. If E, and E, are measurable subsets of [a,b], prove that the symmetric difference of
E, and E, is also measurable.

4. If E, and E, are measurable subsets of [0,1], and if mE, =1, prove that

m(E,N E,)=mkE,.
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5. If E\,E,,... are measurable subsets of [a,b], prove that
limsupE, and liminfE,
n—oo n—o
are measurable.
6. Show that there exists a closed nowhere-dense subset £ of [a,b] such that mE >0.

11.4 MEASURABLE FUNCTIONS

We will see that a function may be Lebesgue integrable on [a, b] even if the function is
not continuous at any point of [a,b]. Indeed, for a bounded function to be Lebesgue
integrable we will see that the function need only satisfy a condition much less restrictive
than continuity—namely, measurability. The definition of “measurable function” applies
to unbounded as well as bounded functions, and we ultimately extend the definition of
Lebesgue integral to a wide class of unbounded but measurable functions.

We will discuss only real-valued functions.

11.4A. DEFINITION. Let f be a function on [a,b]. We say that f is a measurable function
if, for every s € R, the set
{x] f(x)>s}

is a measurable set.

That is, f is a measurable function if, for every real s, the inverse image under f of
(s,00) is a measurable set. It follows immediately that every continuous function g on
[a,b] is measurable! For (s,0) is an open set. If g is continuous, then, by 5.4G, the
inverse image under g of (s, o) is open. But, by 11.2H, open sets are measurable. Hence,
{x|g(x)> s} is a measurable set, and so g is a measurable function.

On the other hand, some functions that are discontinuous at every point are still
measurable. For example, if x is the characteristic function of the rational numbers in
[0,1], then {x|x(x)>s} is empty if s> 1, {x|x(x)>s)} is the set of rationals in [0, 1] if
0<s<1, while {x|x(x)>s}=[0,1] if s<0. In any case {x|x(x)>s} is a measurable set.

Here are other criteria for measurability equivalent to 11.4A.

11.4B. THEOREM. The function f on [a,b] is measurable if and only if any one (and
hence all) of the following statements hold.

(a) For every sER the set {s| f(x)> s} is a measurable set.
(b) For every s € R the set {x| f(x)<s)} is a measurable set.
(c) For every s€R the set {x| f(x)<s} is a measurable set.

PROOF: Suppose f is measurable. Then, by 11.2A, {x| f(x)>s} is a measurable set.
But {x| f(x) <s} is the complement of {x| f(x)>s}. Hence, by 11.2G, {x| f(x)<s} isa
measurable set. Hence, if f is measurable, then (c) holds.

We now show that (a) holds if f is measurable. For if f is measurable and s € R, then,
by 11.4A, each of the sets {x| f(x)>s—1/n} is measurable (n=1,2,...). But then, by
11.3H, N2 {x| f(x)>s—1/n} is measurable. However, it is easy to verify that

1
{x] f(x)=s}= N {xl f(x)>s— ;}
n=1
Hence, the set on the left is measurable, and so (a) holds.
The remainder of the proof is left to the reader.
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11.4C. coroLLARY. If fis a measurable function on [a,b], then the inverse image under
fof any interval (bounded, unbounded, closed, open, half-open, etc.) is a measurable set.

PROOF: Let [A,p) be a bounded half-open interval. Then
(A )= 00) N (— 0, 1).

By (a) of 11.4B, the set f ~!([A, ©)) is measurable. By (b) of 11.4B, the set f ~!((— o0, n)) is
measurable. But, by 1.3F,

ST =S ([A ) NS (= o0, m)).
Since each of the two sets on the right is measurable, it follows from 11.3B that

f7'([\, ) is measurable. The theorem is thus proved for the case of intervals of the form
[A, ). All other cases may be handled in identical fashion.

Sets of measure zero do not affect measurability for functions.

11.4D. THEOREM. If f and g are functions on [a,b), if
f(x)=g(x) almost everywhere* (a<x<b), (1

and if f is measurable, then g is also measurable.

PROOF: To show that g is measurable we must show that, if s € R, then the set
E,={x|g(x)>s}
is measurable. Since f is measurable, we know that the set
E,={x| f(x)>s}

is measurable. But, by (1), the symmetric difference of E, and E, has measure zero.
Hence, by the theorem in 11.31, the measurability of E, follows from that of E,.

We now set about showing that sums, products and limits of sequences of measurable
functions are again measurable functions. Indeed, just about anything you can do with
measurable functions will yield measurable functions. This fact leads to better theorems
than can be obtained for Riemann-integrable functions.

11.4E. THEOREM. If fis a measurable function on [a,b], and if ¢ € R, then the functions
f+ ¢ and ¢f are measurable.

PROOF: If sER, then
(x| f(x)+c>sy={x| f(x)>s—c}.
The set on the right is measurable since f is a measurable function. Hence, the set on the

left is measurable, which shows that the function f+ ¢ is measurable.
If ¢ <0, then ¢f(x)>s if and only if f(x)<s/c. Hence,

{x[cf(x)>s}={x|f(x)<%}.

The set on the right is measurable by (b) of 11.4B. Hence, the set on the left is
measurable. This shows that ¢f is a measurable function if ¢ <0. The cases ¢ >0and ¢=0
may be handled in similar fashion to complete the proof.

* This means that the set of x in [a,b] for which the statement f(x)=g(x) does not hold has measure zero.
See 7.1D.
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From 11.4E it follows that —f is a measurable function whenever f is. Also, if f is
measurable, then ¢—f is a measurable function for any ¢ € R. We next treat sums,
products, and so forth, of measurable functions.

11.4F. THEOREM. If f and g are measurable functions on [a,b], then so are f+g, f—g,
and fg. Furthermore, if g(x)#0 (a < x < b), then f/g is also measurable.

PROOF: Let r,r,r;,... be an enumeration of the set of all rational numbers. If
x E[a,b] and s E R, it is clear that f(x)>s— g(x) if and only if there is a rational number
r, such that f(x)>r, and r,>s— g(x). Hence,

0
(x| f(x)+&(x)>s)= U [{x] f(x)>r )0 {xls—g(x)<r,)}]. (1
n=1
For any n €1, the set {x| f(x)>r,} is measurable, since f is a measurable function. The
set {x|s—g(x)<r,} is also measurable, since, by 11.4E, s — g is a measurable function.
Thus by 11.3B and 11.3H, the set on the right of (1) is measurable. This proves that f+g
is a measurable function.

It then follows from 11.4E that f— g=f+(— g) is measurable.

To show that fg is measurable we imitate a trick used in the first proof of 2.7G. We
will prove first that the square of a measurable function is measurable. Indeed if 4 is a
measurable function on [a,b] and s <0, then the set {x|[2(x)]*>s)} is equal to [a,b] and
is thus measurable. If s >0, then

{xI[R(x)]*>s}={x[h(x)>Vs Ju{x|h(x)< = Vs }.

Since h is a measurable function, each of the sets on the right is measurable. Thus
{x|[h(x)]*>s)} is measurable for any s€ R, which proves that h? is a measurable
function.

Now if f and g are measurable functions, then, by what we have already proved,
( f+2)? and ( f— g)?* are also measurable. Since

fe=i[(f+8)=(f-2)],

it follows that fg is measurable.

We leave the proof of the assertion concerning f/g to the reader. Note that since
f/g=f(1/g), it suffices to show that 1/g is measurable whenever g is a measurable
function such that g(x)#0 (a < x < b). '

The next results deal with sequences of measurable functions.

11.4G. THEOREM. Suppose { f,}7>_, is a sequence of measurable functions on [a,b] such

n=1

that the sequence { f,(x)}5-, is bounded for every x €[a,b]. Let

M (x)=Lub.{ f(x),£,(x).f3(x),... } (a<x<b)
and

m(x)=glb.{ fi(x),fo(x).f3(x),...} (a<x<b).

Then the functions M and m are both measurable.

PROOF: If s€R and x€[a,b], then m(x)<s if and only if f,(x)<s for some n.
Hence,

{x|m(x)<s}= U {x| f,(x)<s}.

n=1
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By (b) of 11.4B, each of the sets {x|f,(x)<s} is measurable. Hence, by 11.3H,
{x|m(x)<s} is measurable. This, again by (b) of 11.4B, shows that the function m is
measurable.

That M is measurable follows from the equation

{(xIM (x)>s}= L—J1 {x] f,(x)>s}.

The special case in which f,=f,=f,=--- shows that max( f,f,) and min( f,f,) are
measurable functions if f; and f, are measurable.

11.4H. THEOREM. If { f,}%_, is a sequence of measurable functions on [a,b] such that

n=1

the sequence { f,(x)}-, is bounded for every x €[a,b], and if
S*(x)=limsup f, (x) (a<x<b),
fa(x)= liminf £, (x) (a<x<b),

then the functions f* and f, are both measurable. In particular, if { f,}_, converges
pointwise to f on [a,b], then f is measurable.

PROOF: For n€l let

80 (x) =Lb.{ £, (X)fyu 1 (X)ofyaa(X)--)  (a<x<b).
Then, by 11.4G, each g, is a measurable function. Moreover, by 2.9A,

fH(x)=lim g,(x)  (a<x<b).
Also, for any x €[a, b],
g1(x) > ga(x) > g3(x) > - - -
Hence, if sER,
o
{x| f*(x)<s}= U {x|g,(x)<s}.

n=1
From 11.4B and 11.3H it follows that f* is measurable.
That f, is measurable may be proved similarly. Finally, if { f,}., converges point-
wise to f, then, by 2.9C and 2.9F, f= f*=f, and so f is measurable. This completes the
proof.

We conclude this section by showing that in 11.4H pointwise convergence may be
replaced by pointwise convergence almost everywhere.

11.41. THEOREM. If {f,}-, is a sequence of measurable functions on [a,b], and if

nlirgo f,(x)=f(x) almost everywhere (a<x<b),

then f is measurable.

PROOF: Let E be the set of x in [a,b] at which the statement
Tim f, (x)=£(x)

does not hold. Then, by hypothesis, £ has measure zero. Define the functions g,(n€1)
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and g as follows:
g(x)=f(x) (xZE); g(x)=f(x) (xgE)
8,(x)=0 (x€E); g(x)=0 (x€E).
Then each g, is measurable, by 11.4D. Now, if x € E, then
lim g, (x)=0=g(x).
Also, if x&Z E, then
lim g,(x)= lim f, (x)=f(x)=g(x).

Hence, {g,}>_, converges pointwise (everywhere) to g on [a,b]. Since each g, is
measurable, it follows from 11.4H that g is measurable. Another application of 11.4D
shows that f is measurable, and the proof is complete.

Exercises 11.4

1. If
f(x)=% O<x<1),

f(0)=5,
f(H=1,
prove that f is measurable on [0, 1].
2. Show that the subset E of [a,b] is measurable if and only if its characteristic function
Xg 1s measurable.
Does there exist a nonmeasurable function on [a,b]?
4. If J, and J, are intervals of real numbers, and if f is a measurable function on [a,b],
show that f~'(J,UJ,) is a measurable subset of [a,b].
5. If F'(x) exists for every x in [a,b] and

f(x)=F'(x) (a<x<0b),

w

prove that f is a measurable function. (Hint: Define F(x)= F(b) for x >b. Then let
F(x+1/n)— F(x)
1/n

Show that each f, is measurable and note that

f(x)=lim f,(x)  (a<x<b))

Ja(x)=

(a<x<b;nel).

6. If G is an open subset of R' and if f is a measurable function on [a,b], prove that
f~Y(G) is a measurable subset of [a,b].

11.5 DEFINITION AND EXISTENCE OF THE LEBESGUE INTEGRAL FOR BOUNDED
FUNCTIONS

Our definition of the Lebesgue integral parallels that of the Riemann integral. We
begin by defining M| f; E] and m[ f; E] for a bounded function f and a subset E of the
closed bounded interval [a,b]. This will generalize 7.2A.
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11.5A. DEFINITION. Let f be a bounded function on [a, b], and let E be a subset of [a,b].
Then we define M| f; E] and m[ f; E] as

M f;E]=lub. f(x),
m[ f,E]= g.élz_.f(x).

Instead of dividing [a,b] into intervals (as in 7.2B) we will partition [a,b] into
measurable subsets.

11.5B. DEFINITION. By a measurable partition P of [a,b] we mean a finite collection
{E,E,,...,E,} of measurable subsets of [a,b] such that

U Ek=[a,b]
k=1
and such that
m(Eijk)=0 (,k,=1,...,n;jFk).

The sets E|, E,,..., E, are called the components of P.
If P and Q are measurable partitions, then Q is called a refinement of P if every
component of Q is wholly contained in some component of P. (That is, if the com-
ponents of Q are obtained by breaking up the components of P.)

Thus a measurable partition P is a finite collection of subsets whose union is all of
[a,b] and whose intersections with one another have measure zero.

It is then clear that if o={xg,x,,...,x,} is a subdivision of [a,b] (as in 7.2B) with
component intervals I,,1,,...,1,, then {I,,1,,...,1,} is a measurable partition of [a,b].
However, there are many measurable partitions of [a,b] whose components are not
intervals. For example, if £, is the set of rationals in [a,b], and E, is the set of irrationals
in [a,b], then { £, F,} is a measurable partition of [a,b].

We next generalize 7.2C.

11.5C. DEFINITION. Let f be a bounded function on [a,b] and let P={E,,...,E,} be
any measurable partition of [a,b]. We define the upper sum U[ f; P] as

UlfiP]= kél M| f; E,]'mE,.

Similarly, we define the lower sum L[ f; P] as*
L[ f;P]= 2 m[ f; E,]-mE,.
k=1

Note that if £,,..., E, are the component intervals of a subdivision ¢, then U[ f; P] as
defined here is precisely the same as U[ f;o] as defined in 7.2C. Hence, the set of
numbers U] f;o] for all subdivisions ¢ is a subset of the set of numbers U[ f; P] for all
measurable partitions P.

Corresponding to 7.2D we have the following result.

11.5D. LEMMA. Let f be a bounded function on [a,b]. Then every upper sum for f is
greater than or equal to every lower sum for f. That is, if P and Q are any two
measurable partitions of [a,b], then U[ f; P]> L[ f; Q]

* Do not confuse the two uses of m.
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PROOF: We will not give many details of this proof since it follows that of 7.2D very
closely. First one should show that if P* is any refinement of P, then

U[f;P])U[f;P*]. (1
The case where P={E,,...,E,,....,E,} and P*={(E|,...,E} E}*,...,E,} is proved as in

7.2D, and the general case of (1) follows by induction.
Similarly, if Q* is a refinement of Q, then

L[ ;0] < L[ f:0*]
Now, if the components of P are E,,...,E,, and the components of Q are F,,...,F,, let T

be the measurable partition whose components are the n-m subsets E;N F(i=1,...,n;j
=1,...,m). Then T is a refinement of both P and Q. Hence, by (1) and (2) we have

U P> Ui T)> L[ £;T]> L[ £;Q],

and the lemma is proved.

11.5E. Exactly as in 7.2E we may now show that
1Lb. Ul f;P1>1lub.L[ f; P],
glb.U[f;P]>1ub. L[ f;P] (1
where the g.l.b. and lL.u.b. are taken over all measurable partitions P of [a,b]. (Verify.)

This puts us in a position to define the Lebesgue upper and lower integrals of a bounded
function f on [a,b]. To avoid ambiguity, we will denote by

%?f and ébef

the Riemann upper and lower integrals of f as defined in 7.2E, while the Lebesgue upper
and lower integrals of f, which we are about to define, will be denoted by

E—Ff and fbf.

DEFINITION. Let f be a bounded function on [a,b]. We define

b
g f f(x)dx,
called the Lebesgue upper integral of f over [a,b], as
| B—f_g f(x)d Lb. U[ f; P]
x)dx = g.l.b. ;
a P [
where the g.l.b. is taken over all measurable partitions P of [a,b]. Similarly, we define
b
) f f(x)dx,
called the Lebesgue lower integral of f over [a,b], as
b
Bfo(x)dx= Lub. L[ : P].

For simplicity we sometimes denote the upper and lower integrals of f by

B?f and bef.
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From the inequality (1) it follows that

L f< Lff- 2

From the remark following definition 11.5C (namely, that every U[ f;o]is a U[ f; P)) it
follows that

L?f= glb.U[ f;P]<glb.U[ fio]= ?Pp?f. 3)
a P 4 a
(That is, roughly, the bigger the set, the smaller the g.l.b. of the set.) Similarly,
b b
Bfo= Lub.L[ fiP]>lub.L[ fio]= %fo. )

Thus from (4), (2), and (3) we conclude that for any bounded function f on [a,b],

ébeKbeKE?K@{?f. (5)

b
We will now denote the (Riemann) integral as defined in 7.2F by @} f f, and the
a

b
Lebesgue integral, which we will now define, by £ f f.

11.5F. pEFINITION. If f is a bounded function on [a,b], we say that f is Lebesgue

integrable on [a,b] if e
b b
P f f= f f.

b b
In this case, we define Bf f(x)dx (or Bf f) as

b b b
e f f=0 f_ f=L f f.
If f is Lebesgue integrable on [a,b], we write f € £[a,b].

In Section 11.7 we define the Lebesgue integral for a wide class of unbounded
functions. Thus ultimately, the statement f &€ £[a,b] will not imply that f is bounded.
Hence, in Section 11.6, we include the boundedness in the hypotheses of many theorems
on (bounded) functions in £[a,b].

We next prove the extremely important result which states that if a bounded function f
is Riemann integrable, then f must be Lebesgue integrable and the two integrals of f are
equal!

11.5G. THEOREM. Let f be a bounded function on [a,b]. If f € R [a,b], then f € £[a,b]
and

b b
R p=eff (1)
PROOF: From (5) of 11.5D we have

@lfabf<{ifabf<ﬁff<6ﬁ,ff. )
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If f€ %R [a,b], then, by definition, the extreme left- and right-hand terms in (2) must be
equal. It follows that all four terms in (2) are equal—that is,

afabf=fifabf=eff=@1ff.

Thus f € £[a,b] and the equation (1) follows immediately.

Thus there is no need to distinguish between
b b
R and £ ,
oo s el
for when both integrals exist they must be equal. Henceforth we will write

b b
f S (or f S (x)dx) for the Riemann or the Lebesgue integral of f and, by 11.5G, no
a a

ambiguity will arise.

Theorem 11.5G states that any bounded function that is Riemann integrable must also
be Lebesgue integrable. After we duscuss the existence of the Lebesgue integral it will be
clear that many bounded functions that are Lebesgue integrable are not Riemann
integrable.

The proof of the next theorem is almost identical to that of 7.2G (with subdivisions
replaced by partitions), and we therefore omit it.

11.5H. THEOREM. Let f be a bounded function on [a,b]. Then f € £[a,b] if and only if
for each €>0 there exists a measurable partition P of [a,b] such that

U[f;P]<L[f;P]+e. @)

To illustrate 11.5H let x be the characteristic function of the irrational numbers in

[0,1]. Let E; be the set of irrational numbers in [0, 1], and let E, be the set of rational

numbers in [0,1). Then P={E, E,} is a measurable partition of [0,1]. Moreover, x is

identically 1 on E, and x is identically 0 on E,. Hence, Mx; E\]=m[x; E,]=1, while

M [x; Ej)=m[x; E;]=0. Hence, Ulx;P]=1-mE,+0-mE,=1. Similarly, Lix;P]=1.
Since U[x; P]= L[x; P], it follows from 11.5H that x& £10,1]. Moreover, since

1
L[x;P]<f0 X< U[x: P],

we have

1
f x=1.
0

Note that x & R [0, 1].

For most functions f there is no one partition P for which Ul f;P]l=L][ f; P). (The
function x of the preceding paragraph is an exception.) If f& £[a,b], the partition P
such that (1) holds usually depends on e.

Next we show the important role played by measurable functions. We will prove that
every bounded measurable function f is Lebesgue integrable. Note that the proof
involves a subdivision of an interval containing the range of f. That is, we subdivide on
the y axis instead of on the x axis as with the Riemann integral.

11.51. THEOREM. If fis a bounded measurable function on [a,b]), then f € £[a,b].
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PROOF: Since f is bounded there exists M >0 such that the range of f is contained in
the half-open interval [— M, M). Given €>0 there exist a finite number of points
Yol1s++-sY, sSuch that — M=y, <y, <--- <y,=M and such that y,—y,_,<e/(b—a)
(k=1,...,n). (That is, { yo,7;,...,¥,} is a subdivision of [— M, M] such that the distance
between any two successive points of subdivision is less than €/(b—a).) For each
k=1,2,...,n, let E, be the inverse image of [y, _,,y,) under f. (That is, x € E, if and only
ify,_, < f(x)<y,,c ) Then each E; is measurable, by 11.4C. It is then easy to verify that
P={E E,,...,E,} is a measurable partition of [a,b]. Since M| f; E,]< y, we have

[ ] kle[f Ek:’ mE; < kE Vi-mE,.

Also, since m| f; E,] > y,_, we have

n

L[f;P]= Zlm[f;E]mEk 2 Vi—1-mE,.

k=
Thus
U[f;P]—L[f;P]< 2 (V= Yie1) mE, <3=a 2 mE;. )
k=
Since the E, are pairwise disjoint and U} _,E, =[a,b], we have, by 11.3E,
> mE, = ( U Ek) (2)
k=1 =1
From (1) and (2) we then obtain
Ul fiP]-L[f;P]<e
By 11.5H we then have f & £[a,b], and the proof is complete.
For emphasis, we repeat the result of 11.51. Every bounded measurable function on [a,b]
is Lebesgue integrable.
Thus if f is bounded on [a,b], the measurability of f is a sufficient condition that
fefia,b].
We will show in the next section (theorem 11.6N) that for a bounded function f,

measurability is also a necessary condition that f € £ [a,b]. That is, if f is bounded and
f€L£la,b], then f must be measurable.

Exercises 11.5

1. Write out detailed proofs of 11.5D and 11.5H.
2. What can you say about the function f on [a,b] if there exists a measurable partition
P of [a,b] such that

U[f;P]=L[f;P]?
3. Let
f(x)=2 (0<x<1),
f(x)=4 (1<x<2),
f(x)=3 (2<x<3),
f(x)=2 (3<x<4).
(a) If o is the subdivision {0, 1,2,3,4} of [0,4], calculate U] f;o].
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(b) For £=2,3,4, let E, be the inverse image under f of [k,k+1). Show that
P={EFE, E; E,} is a measurable partition of [0,4].
(c) Calculate U[ f;P]and L[ f; P].

11.6 PROPERTIES OF THE LEBESGUE INTEGRAL FOR BOUNDED MEASURABLE FUNCTIONS

11.6A. THEOREM. If fis a bounded measurable function (and hence in £[a,b]), and if
a<c<b, then f€Lla,c],f€L[c,b], and

[

PROOF: We must first show that f is Lebesgue integrable on [a,c] and [c,b], or, more
precisely, that the restriction of f to these intervals is Lebesgue integrable. To show that
the restriction of f to [a,c] is a measurable function on [a,c] we must show that for any
SER, the set E={x€[a,c]| f(x)>s)} is measurable. But E=[a,c]n E* where E*={x€E
[a,b]] f(x)>s}. Since f is measurable on [a,b], the set E* is measurable. Hence, E is
measurable (see exercise 8 of Section 11.2). Thus f is bounded and measurable on [a,c],
and is therefore Lebesgue integrable on [a,c]. Similarly, f is Lebesgue on [c,b]. The proof

that
[  fm [r+] )

is then an imitation of the corresponding part of the proof of 7.4A with subdivisions
replaced by partitions.

The next two results may be proved in exactly the same manner as 7.4B and 7.4C.
Note that if f is measurable on [a,b] and A € R, then Af is measurable by 11.4E. Also, if f
and g are measurable on [a,b], then f+ g is measurable by 11.4E. Hence, Af and f+ g will
be bounded and measurable if both f and g are bounded and measurable.

11.6B. THEOREM. If f is a bounded measurable function on [a,b], and if AER, then
M € £[a,b] and
b b
A=A .
= s

11.6C. THEOREM. If fand g are bounded measurable functions on [a,b], then f+g is in

£[a,b] and
[ro=[re [ s

The next result shows one of the great advantages of the Lebesgue integral over the
Riemann integral. If fis a bounded measurable function on [a,b] (and hence, Lebesgue
integrable on [a,b]), then changing the values of f on a set of measure zero has no effect

b
either on the (Lebesgue) integrability of f or on the value of f f. (On the other hand,
a

changing the values of a Riemann integrable function on a set of measure zero may
destroy the Riemann integrability of the function. For example, if f(x)=1 (0<x<1)
and if x is the characteristic function of the irrationals in [0, 1], then x may be obtained
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from f by changing the values of f on a set of measure zero, namely, on the set of
rationals in [0, 1]. But f is Riemann integrable and x is not.)

11.6D. THEOREM. If fis a bounded measurable function on [a,b], and if g is a bounded
function on [a,b] such that

f(x)=g(x) almost everywhere (a<x<b),
then

g€L[a,b] and fbg=fbf.

PROOF: By 11.4D, g is measurable. Since g is bounded it follows from 11.51 that g is
integrable. If E is the set of x €[a,b] for which f(x)## g(x), then m(E)=0 by hypothesis.
Then, if E’=[a,b]— E, we have f(x)=g(x) for x€EE'. Let P={E,E'}. Then

Ulg=fiP]=M[g—fiEI'mE+M[g—fE'|-mE'=M[ g—f;E]-0+0-mE"=0.
Similarly, L[ g—f; P]=0. Since
0=L{g~f:P]< [ (8-f)< U[g—f:P]=0,

we have
Hence,

and the theorem is proved.

From 11.6D it follows immediately that a bounded function that is zero almost
everywhere must be Lebesgue integrable and have integral zero.

11.6E. THEOREM. If fis a bounded measurable function on [a,b], and if
f(x)>0 almost everywhere  (a<x<b),
then

fbf>0'.

PROOF: By 11.6D we may assume that f(x)>0 for all x in [a,b]. (For this requires
b
changing the values of f only on a set of measure zero and hence, cannot affect f f)
a

But it is then obvious that U[ f; P]1> 0 for any measurable partition P, and hence,

b
Bfa f=glb.U[f;P]>0.

Since f is integrable we have

and the theorem is proved.
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We may then deduce the next corollary exactly as 7.4E was deduced from 7.4D.

11.6F. coroLLARY. If f and g are bounded measurable functions on [a,b], and if
f(x)< g(x) almost everywhere (a<x<b),

fabf<fabg~

From 11.6F we deduce the following result.

then

11.6G. coroLLARY. If fis a bounded measurable function on [a,b], then | f| € £[a,b]

and
fabfl <fab| fl.

PROOF: Since | f|=max( f,0)—min( f,0), it follows from 11.4G and 11.4F that | f| is
measurable. Since | f| is clearly bounded,, | f| must be integrable. The remainder of the
proof follows that of 7.4F.

11.6H. perINITION. If b<a, we define
b a
tobe — ,
/! f s
provided that f is integrable on [b,a].
11.6I. We leave it to the reader to prove that

f:f+fcbf=fab,

regardless of the order of a,b,c.

11.6J. We will now give the definition of f f where fis a bounded measurable function
E

on [a,b] and E is a measurable subset of [a,b]. Note that in this situation the function
fxg will be bounded and measurable on [a,b] and hence, integrable on [a,b]. (Here xE is,
of course, the characteristic function of E.)

DEFINITION. Let E be a measurable subset of [a,b] and let f be a bounded measurable
function on [a,b]. Then ff is defined as
g .

b
f=1 e
f1- L
The integral f f then has the same elementary properties as those we have just proved
E

b
for f f. We now list these properties, after which we indicate how they may be
a

demonstrated.
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11.6K. THEOREM.

1. If E, and E, are disjoint measurable subsets of [a,b], and if f is a bounded
measurable function on [a,b], then

J =l ]s
E\UE, E,

2. If E is a measurable subset of [a,b], if fis a bounded measurable function on [a,b],
and if A ER, then

[v=A[
E E

3. If E is a measurable subset of [a,b], and if f and g are bounded measurable
functions on [a,b], then

£u+m=£f+£g

4. If E is a measurable subset of [a,b], and if f and g are bounded measurable
functions on [a,b] such that

f(x)=g(x) almost everywhere (xEE),
then

£f=£g-

5. If E is a measurable subset of [a,b], and if f is a bounded measurable function on
[a,b] such that

f(x)>0 almost everywhere (x€E),
then

[ f>o.
E

6. If E is a measurable subset of [a,b], if f and g are bounded measurable functions
on [a,b], and if

f(x)< g(x) almost everywhere (xEE),
then

Ji<[ e
E E

PROOF: To prove (1), for example, note that xg , g, =Xg, + Xg, since E, and E, are
disjoint. Hence, fxg , g, = fXg, + fXg,, and so we obtam using 11. 6J and 11. 6C,

f f= ffXE,U52 f(fXE,+fXEZ)

E\UE,
—ffx5,+ffx5 £f+ff

This proves (1).
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To prove (4) note that if f(x)=g(x) for almost every x in E, then
f(x)xe(x)=g(x)xg(x) almost everywhere (a<x<b).

But then, by 11.6D,
b b
fa fxe= fa 8Xg-

{/f= { g.

This proves (4). The other assertions follow just as easily.

Thus by 11.6],

The following assertion is elementary but important.
11.6L. THEOREM. If F is a measurable subset of [a,b], then*
[1=mE.
E

PROOF: We have

£1='£bXE- (M

If E'=[a,b]—FE and if P={E,E'}, it is easy to verify that Ulxg; P]=mE= L[x;; P].
Hence,

mE=L[x;P] <f Xg < U[x;P]=mE,
a
and so

[ xs=me. 2)

The theorem follows from (1) and (2).
The following result is quite useful.

11.6M. THEOREM. If fis a bounded measurable function on [a,b] such that
f(x)>0 almost everywhere  (a<x<b),
and if

fabf=0, (1)

then
f(x)=0 almost everywhere (a<x<b).

PROOF: Suppose the theorem were false. Then the set E={x|f(x)>0} would be
measurable and mE >0. Now E=U%_,E, where E,={x|f(x)>1/n}. Since E, is
measurable and since E,C E,C -, it follows from 11.3F that lim, , mE,=mE and

* The integral f 1 means, of course, ff where f(x)=1 (a< x<b).
E E
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hence, lim,_,  mE,>0. Thus mE, >0 for some N € /. But then

ff>f fxe, = ff> N ]LmEN>0.

This contradicts (1), and the contradiction shows that the theorem must be true.

n— o0

Finally, we show that a bounded Lebesgue integrable function must be measurable.

11.6N THEOREM. If fis bounded and f&€ £[a,b], then f is measurable.

PROOF: Foreach n=1,2,... there exists, by 11.5H, a measurable partition P, of [a,b]
such that

USR] - L[ f:P] < (1)

We may assume that P, is a refinement of P,. (For otherwise we could take the
intersections of the components of P, with those of P,,, to obtain a partition P,
which is a refinement of both P, and P,,,. We would then have

L[ f;Pyer ]S L[ i Pyar] < UL fiPaar] < U[ £ Poir ],

so that

1
UL Paar] = LA Pd ] S UL Pt = LU Pod ] <57 -
Hence, P/

1 is a refinement of P, that satisfies (1).)
Fix n. Suppose P,=(E,,EZ...,EX}. We may assume that the E/ are pairwise disjoint.
Define functions g,,h, on [a,b] by

h,,(x)=M[f;E,{] (xEELj=1,...,k)
g.(x)=m[fiE)]  (xEE};j=1,...,k)
so that
8,(x) < f(x) < h,(x) (a<x b).

Both g, and h, are measurable since they are constant on each E/. Moreover, since P, ,
is a refinement of P,, we have

gn(x)< gn+l(x)’ hn(x)>hn+l(x)

for all n=1,2,..., and all x in [a,b]. By 2.6B and 2.6E the sequences of functions
{8,}%., converge pointwise on [a,b]. Let

g(x)= lim g,(x)  (a<x<b)
h(x)= nli)nolo h,(x) (a<x<b).
Then g and h are measurable, by 11.4I, and
g,(x)< g(x) < f(x) < h(x)< h,(x) (n=12,...;a<x<b). 2)

fabg,,<fabg<fabf<fabh<fabh,, S (n=1,2,...). 3)

Hence,
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But h,= M[f; E/] on E/ so that, by 11.6K,
b = = - E1T. Ty ... - EX]. k
j;h,,— E;h"+ +fE”kh,,_M[f,E,,]mE,,+ + M| f; EX]-mE}.
Hence,
b
[ h=U[£P,]. )
a
Similarly,
b
f g.=L[f;P,]. (%)
From (1), (4), and (5) we have
b b 1
h,— <-= =1,2,...).
S o<y )

From (3) we then have

j;bh—fabg<% (n=1,2,...).

Hence, /% (h—g)=0. Since g(x) < h(x) for all x, it follows from 11.6M that g(x)= h(x)
a.e. Thus from (2), f(x)= h(x) a.e. But then, since 4 is measurable, 11.4D implies that f is
measurable and the proof is complete.

From 11.5I and 11.6N we see that if fis a bounded function on [a,b], then f € £ {a,b]
if and only if f is measurable.

Exercises 11.6

1. If feL{a,b), if E C[a,b] and mE =0, show that

fEf=o.

2. If E, and E, are measurable subsets of [a,b], and if fC £[a,b], prove that

Sl St S S

3. If f is a bounded measurable function on [a,b], and [5[f(x)]?dx=0, prove that
f(x)=0 for almost all x in [a,b].

4. Write out the details of the proofs of 11.6D and 11.6G.

5. Let f be a bounded measurable function on [a,b] such that

f(x)>0 almost everywhere (a<x<b).

If £ and F are measurable subsets of [a,b] such that E C F, prove that

el

6. Let E|,E,,...,E, be measurable subsets of [0,1]. If each point of [0,] belongs to at
least three of these sets, show that at least one of the sets has measure >3/n. [Hint:
Let x,,...,x, be the characteristic functions of E|,..., E,. First show that

X (X)+ - +x,(x)>3 (0<x<1).
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11.7 THE LEBESGUE INTEGRAL FOR UNBOUNDED FUNCTIONS

We now extend the definition of the Lebesgue integral to a large class of unbounded
measurable functions. We begin by considering nonnegative-valued functions.

11.7A. DEFINITION. If f is a nonnegative-valued function on [a,b], and if n€1, we
define the function ”f on [a,b] as follows. For each x in [a,b] let

F(x)=f(x) if 0<f(x)<n,
"f(x)=n if f(x)>n.

That is,
f(x)=min[ f(x),n]  (a<x<b).

Thus the graph of "f is obtained by truncating the graph of f. For example, if
1

f(x)= (0<x<1),
Vx
f(0)=0,
then |
Y=—— (g <x<1)
X

if(x)=4 (O<x<%),
¥(0)=o0.

11.7B. Now suppose that f is a nonnegative-valued unbounded measurable function.
Then, for each n€1, the function 7f is a bounded function and, by 114G, " is
measurable. Hence, by 11.51, "f is Lebesgue integrable. It is then clear that

()

is a nondecreasing sequence of real numbers, and hence, either converges or diverges to
infinity.

DEFINITION. Let f be a nonnegative-valued unbounded measurable function on [a,b]. If

) b
lim "f
n—oo a

exists, then we say that f is (Lebesgue) integrable on [a,b] and define f4 f as
b b
f f=lim [ "
a a

n—oo

If fis Lebesgue integrable, we write f € £[a,b].
If f is the function in the example after 11.7A, then*

1
1 n3
[ [ e [ naee (3o )+

() 1/n3‘3/_x 0 2n n

* The value of "f at 0 does not affect our computations (11.6D).
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Hence,

. l,,_3
nIL‘E‘ofOf‘z‘

According to the definition we will thus say that f is integrable on [0, 1] and

X

1
1 1 3
fof—j:\g/;dz.

1
fldx
o Vx

is an improper Riemann integral, as a Lebesgue integral it is perfectly “proper” even
though the integrand is unbounded. Note that, when viewed as an improper Riemann

integral,
1
f I dx
o Vx
also has the value 32
We leave it to the reader to show that if f(x)— 1/x (0< x<1), f(0)=19, then f is not
integrable on [0, 1].

From 11.7B it is easy to show that if fis a nonnegatlve-valued measurable function on
[a,b], and if

Thus, although

f()<g(x) (a<x<b),

where g € £[a,b), the fis also in £[a,b]. (See exercise 3.)
If f is a nonnegative-valued bounded measurable function on [a,b], then "f=f for all
sufficiently large n. Hence, the equation

[1=dm [
also holds for bounded f.
In order to define the Lebesgue integral for measurable functions that take both

positive and negative values, we show that such functions can be written as the
difference of two nonnegative-valued measurable functions.

11.7C. DEFINITION. Let f be any real-valued function on [a,b]. We define the functions
f* and f~, called respectively the positive and negative parts of f, as

S =max(f,0).
S~ =max(—f,0).
Fix x €[a,b]. If f(x)>0, then f*(x)=f(x) and f~(x)=0. If f(x)<O0, then f*(x)=0

and f~(x)= —f(x). If f(x)=0, then f*(x)=f"(x)=0. From these considerations it is
clear that the following corollary is true.

11.7D. coroLLARY. If fis any real-valued function on [a,b], then

f=f*=f" and |fl=f*+/".
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From 11.7C it is clear that f* and f~ are nonnegative-valued (even though f~ is
called the negative part of f). The graph of f* consists of those portions of the graph of f
that lie above the x-axis, together with portions of the x-axis. The graph of f~ is
obtained in a similar fashion from the graph of —f.

For an example, if

f(x)=x*—1 (—2<xx2),

then
fro=f(x) (-2<x<-1),
fr(x)=0 (—1<x<1),
frE=f(x)  (1<x<2).
Similarly,
fT(x)=—f(x) (—1<x<1),
and so on.

11.7E. Now if the real-valued function f on [a,b] is measurable, it follows from 11.4G
that both f* and f~ are also measurable. Also, both f* and f~ are nonnegative valued.
Hence, whether or not f* and f~ are integrable can be determined from previous
definitions. This leads us to the following definition of the Lebesgue integral for
arbitrary measurable functions.

DEFINITION. Let f be a measurable function on [a,b]. If both f* and f~ are Lebesgue
integrable on [a,b], then we say that f is Lebesgue intregrable on [a,b]. In this case we
write f € £[a,b] and define [5f as

[r=fr=[r *)

We leave it to the reader to show that if f is bounded then (*) is consistent with
previous results.

Thus the class £[a,b] contains all bounded measurable functions and, in addition, all
unbounded measurable functions f such that f* and f~ are both integrable according to
definition 11.7B or 11.5F.*

Note that the statement f € £[a,b] implies that f is measurable !!

Most of the elementary properties of the Lebesgue integral for arbitrary measurable
functions may be easily established by use of corresponding results for bounded
measurable functions. (Certain results for the case of unbounded functions, however,
take quite a bit of work to establish.) We demonstrate most of these properties for
integrals on a measurable subset E of [a,b].

If f is a nonnegative-valued measurable function on [a,b], and if E is a measurable
subset of [a,b], then, for any n € I, it is easy to verify that

fxe="(fxe)-

Integrating both sides we have
b
Jr= [ "Uxe). (1)
E a

*If f is unbounded, one (but not both) of the functions f* and f~ may be bounded.
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If f € £[a,b]), then both sides of (1) are not greater than [ f. Hence, as n— oo, the limit of
each side of (1) exists. We then have

b
lim ("= lim [ "(fxz).
E n—oo a

n—oo

But by definition 11.7B, the quantity on the right is equal to 2 fx.. Hence,

lim_ [ /= f ’ fxe- )

n—oo

Either side of (2), therefore, may be used to define [, f where f is a nonnegative,
measurable, but not necessarily bounded function in £[a,b].

11.7F. DEFINITION. Let E be any measurable subset of [a,b]. If f is a nonnegative-
valued function in £[a,b], we define [ f as

J0= [ o= Jim [

Furthermore, if f is an arbitrary measurable function in £[a,b], we define [, f as
f=1f=1rf.
J=1=
We now come to the properties of the integral.

11.7G. THEOREM. Let E be any measurable subset of [a,b]. If f€ £[a,b), g€ L[a,b],
and if

f(x)=g(x) almost everywhere (xEE), D

Jot= )t

PROOF: Suppose first that f and g are nonnegative-valued. From (1) it follows that,
for any nel,

then

"f(x)="g(x) almost everywhere (XEE).
By (4) of 11.6K we then have
Jr= e

Letting n—oo and using 11.7F we then have

e

Thus the theorem is true for nonnegative-valued f and g.
Now suppose f and g are arbitrary functions in £[a,b] such that (1) holds. Then

fr(x)=g*(x) almosteverywhere (xE€E).
By the first part of the proof we then have

J =L
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Similarly,

Hence,

fEf=fEf+—fEf'=ng+—ng‘=ng,

and the proof is complete.

The proof of 11.7G illustrates the pattern of proof common to many theorems about
properties of the Lebesgue integral for arbitrary measurable functions. The pattern is as
follows: A property P is known for the integral of bounded measurable functions. By a
limit process P is then shown to hold for the integral of nonnegative-valued, measurable
(but possibly unbounded) functions. Finally, via the equation

Jo=r =)0

P is shown to be true for the integral of arbitrary measurable functions in £[a,b].
This pattern may be used to prove the assertions in the next two theorems.

11.7H. THEOREM. Let E, and E, be disjoint measurable subsets of [a,b]. If f € £[a,b],

then
fs,ugffg N

1 2

11.71. THEOREM. Let E be a measurable subset of [a,b], and let A be any real number.

If f€ £[a,b], the Af € £[a,b] and
fEAf=>\fEf.

11.7J. The extension of (3) of 11.6K to arbitrary functions in £[a,b] is not easy. We
first need a lemma.

LEMMA. Let f and g be nonnegative-valued functions on [a,b]. If f, g € £[a,b], then

f+geLla,b] and
[uro=["r+["s (1)

[u-o=[r-[e )

PROOF: Let h=f+g, so that 4 is nonnegative-valued and measurable. It is then easy
to verify that, for any n€1,

"h(x) <"f(x)+"g(x) <*h(x) (a<x<b).

Also, f—g€ £[a,b] and
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Using (6) and (3) of 11.6K we then have

fab"h <fab”f+ j;b”g<fab2"h. 3)

Since

) b b ) b b
lim ’f=f £, lim ”g=f g
a a n—e J, a

n—oo

it follows that

s [
[

exists. Hence, h=f+ g€ £[a,b]. Letting n—o0 in (3) we then have

b b b b
fah<faf+fag<fah.

b b b
h= + ,
Jor=fre e
which is precisely (1).

To prove the second part of the lemma, let k=f—g and let
E={x€[a,b]lk(x)>0}.

Then, for x € E,, the values f(x), g(x), and k(x) are all nonnegative. Hence, fxg, gX,,
kxg, are nonnegative-valued on [a,b]. Also

fX£,=gX15l + kXE,- 4

This shows that kxg (x) < fxg (x) for all x €[a,b], which implies that kxg € £[a,b). By
the first part of the theorem we may integrate from a to b in (4) to obtain

b b b
= + [ kxg.
fa fxe, fa 8XE, fa XE,
But (by definition of E,) kxz =k*. Hence, k™ € £[a,b] and we have

j;bfxg,=fang51+fabk+. (5)

Now let E, = {x €[a,b]|k(x)<0}. Then, for x € E,, the values f(x),g(x), and — k(x) are
all nonnegative. Also

Hence,

gxe,=fxe, + (~ kXe,).
Since —kxg,=k" it follows that k™ € £[a,b] and

j;ngEz=LbeEz+Lbk_' (6)

fa be15|+ fa bfx52= fa ’s (Xe, + Xz,) = fa °s

b b b
f gXE,"'f gXEz=f g
a z a

But, by (1),

Similarly,
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Also, since k*,k~ € £[a,b), it follows that k € £ [a,b] and
b b b
k=| k*— | k™.
[re=fe-
Subtracting (6) from (5) we thus obtain

'f;b(f—g)=j;bk=j;bf— ng'

This completes the proof.

We now prove that

fE(f+g)=fEf+ng

for arbitrary f,g. More precisely,

11.7K. THEOREM. Let E be a measurable subset of [a,b]. If f,g € £[a,b], then f+g€E
£[a,b] and

fE(f+g)=fEf+ng. (1)

PROOF: By definition 11.7E, the functions f*, f~, g%, g~ are all in £[a,b]. If
h=f+g,then h=(f*—f")+(g*—g~), and hence, h=(f*+g*)—(f~ +g7). Now, by
the first part of the lemma 11.7J, both (f*+g*) and (f~+g~) are in £[a,b).-Hence, by
the second part of the lemma, h € £[a,b]. We then have

j;bh=fab[(f++g+)_(f—+g—)]=.f;b(f++g+)_j;b(f‘+g‘)
=fabf*+fabg+—fabf‘—fabg‘
(L L) (e o)

[ro=["r+["s @)

If we now replace f,g in (2) by fxg,gxg, we obtain (1).
From 11.7K and 11.71 it then follows that

fE(f—g)=fEf—ng

(under the hypotheses of 11.7K).
We next prove two more extensions of theorems previously established for bounded
measurable functions.

That is,

11.7L. THEOREM. Let E be a measurable subset of [a,b]. If f,g € £[a,b] and if
f(x)< g(x) almost everywhere (x€E),

refe

then
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PROOF: By hypothesis we have, for any n€ 1/,
"f(x)<"g(x) almosteverywhere  (x€E).

By (6) of 11.6K we then have
"< | g,
Jr<l

The theorem follows on letting n—o0.
The proof of the next theorem is equally easy and is omitted.

11.7M. THEOREM. If f€ £]a,b], if

f(x)>0 almost everywhere (a<x<b),

[°r=0,

f(x)=0 almost everywhere (a<x<b).

and if

then

The final result of this section is particularly important.

11.7N. THEOREM. Let f be a measurable function on [a,b]. Then f € £[a,b] if and only
if | f|€ £[a,b]. Moreover, if f € £[a,b], then

[t <1

PROOF: If f€ £[a,b], then, by 11.7E, both f* and f~ are in £[a,b]. But, by 11.7D,
|fl=f*+f". Hence, |f|€ £[a,b], by 11.7K. The inequality

b b
< .
)<
then follows as in the proof of 7.4F.
Conversely, suppose f is measurable and suppose | f| € £[a,b]. Since
0SS ()<If(x)]  (a<x<b),

it follows that f* € £[a,b). Similarly, f~ € £[a,b] and hence, f € £[a,b). This completes
the proof.

Exercises 11.7
1. If
f(x)=logL  (0<x<1),
find %.
2. If
f(x)=$ (0<x<1),

prove that f€ £[0,1] if p<1 and that

1
[ =15
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3.

10.

11.
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If fis a nonnegative-valued measurable function on [a,b] and if
f(x)< g(x) (a<x<b)
where g € £[a,b), prove that f € £[a,b).

If

45" and f f(x)=%+sinx  (0<x<27),
fin and f~.

. If g€ L[a,b] and if f is a measurable function on [a,b] such that

If(l<lgx)|  (a<x<b),
prove that f € £[a,b].
True or false? If f and g are in £[a,b], the fg€ £[a,b].
Let f be a nonnegative-valued function in £[a,b). For each n=0,1,2,..., let
E,={x|n< f(x)<n+1}. Prove that 3%_on-mE, < 0.

. If f(x)=0 for every x in the Cantor set K, and f(x)= k for x in each of the intervals

of length 1/3* in K, prove that f is Lebesgue integrable on [0, 1] and that

folf=3.

Let f € £[a,b]. Given € >0, show that there exists a bounded measurable function g
on [a,b] such that

b
f |f-gl<e.
(Hint: Do this first for nonnegative-valued f.)
If f€ £[a,b] and if, for some c ER,
g(H=f(t—c) (a+c<t<b+c),
show that ge £[a+c,b+¢] and

fb+cg(t)dt=fb+cf(t—-c)dt=fbf(t)d,,

a+c

Show that
b —-a
f f(t)dt=f f(—1)dt
a -b
if f€ £[a,b).

11.8 SOME FUNDAMENTAL THEOREMS

Lebesgue integration gives us a very general set of conditions under which a sequence
may be integrated term by term. We first prove a lemma.

11.8A. LEMMA. Let f&€ £[a,b]. Then given €>0 there exists § >0 such that

<e

JJ

whenever E is a measurable subset of [a,b] with mE <.

PROOF: Consider first the case in which f is nonnegative-valued. Then, by 11.7B,
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Thus given € >0, there exists N € I such that
b b
IR
a a

[[U=<5. m

Now choose any 6 >0 with § <e/2N. If E is a measurable subset of [a,b] and mE <3,
then we have

That is,

‘/‘Nfng——N(mE)<N8<_;' )
E E
Hence, using (1) and (2) we have
b € €
Lf= L(f_ Nf) + LA{/<L (f_IYf)_'_ j‘EA.If<5 + 5 =6

which proves the lemma for nonnegative-valued f.
For an arbitrary measurable function f in £[a,b] we have f=f* — f~. By the first part
of the proof, given € >0, there exists §; >0 such that

+ £
Jo <5
when mE < §,. Similarly, there exists §,>0 such that
- _€
Jm<3
when mE < §,. Thus if mE < §=min(é,,6,), we have
= + <L
fEf<fE|f| fEf +fEf S

This completes the proof.

The following theorem, called the Lebesgue dominated convergence theorem, shows
that a sequence of integrable functions may be integrated term by term under much less
restrictive conditions than the uniform convergence required in 9.3G.

11.8B. LEBESGUE DOMINATED CONVERGENCE THEOREM. Let {f, }%_, be a sequence of
functions in £[a,b] such that

nlinolo S, (x)=f(x) almost everywhere (a<x<Db). @)
Suppose there exists g € £[a,b] such that
| f,(x)|< g(x) almost everywhere (a<x<bsnel). 2)
Then f € £[a,b] and
. b b
Jim [Th= "1 (3)

PROOF: Since each f, belongs to £[a,b] it follows that each f, must be measurable
(by 11.6N or 11.7E). Hence, by (1) and 11.41, f is measurable. By (1) and (2) we have
| f(x)| < g(x) for almost all x. It follows that | f| € £[a,b]. Hence, by 11.7N, f€ £[a,b].

Fix € >0. For each N €1 let E,, be the set of all x €[a,b] such that

€

L =I0I<355s (0> N). (4)
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Then E,C E,C E;C -+ and, by (1), almost every point of [a,b] lies in one (and hence,
infinitely many) of the E,. That is, Uy_,E, has measure b —a. By 11.3F we have

li Ey=b—a.
Jim mEy b—a %)
By lemma 11.8A there exists § >0 such that
€
<_
J#<
if mE < 4. It then follows from (2) and (1) that
€ €
fElf,,]<4 and Llf|<z (mE<S$). (6)

By (5) there exists M €1 such that b—a—mE, <§. That is, mE; <8, where Ej,
=[a,b]— E,,. Now if n > M, we have, by (4) and (6),

b
[ 1= f1= [ Vet [ 1)

Y —— + <s4S45
fEMz(b_a) fEhlf,,I fEh|fI S+s+s
That is,

[lh-fi<e  (n>m). ™

[a L

In view of (7) we have actually proved the following result, which is a little stronger
than 11.8B.

This implies, by 11.7N,

<e (n>N),

which proves (3).

11.8C. THEOREM. Under the hypotheses of 11.8B we have
b
Jim 714, (0= (x)ldx=0.

Theorem 11.8B has many advantages over theorem 9.3G. For example, in 11.8B the
functions f, need not be bounded. Moreover, uniform convergence is not required.
Indeed, it is easy to give an example of a sequence {f,}_, that satisfies the

hypotheses of 11.8B but does not converge uniformly. For n €1 let

£, (x)=Vn (%<x<%),

- N,(2
£, (x)=0 (xe[o,n)u(n,zb.
Then lim,_ . f,(x)=0 for all x€[0,2], so that (1) of 11.8B is satisfied with f=0.

n— oo

Moreover, for every n€ I, we have | f,(x)| < g(x)(0< x <2) where

V3 .
=—=  (0<x<2),
g(x) e (0<x<2)

g(0)=0.
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Since g€ £]0,2], the hypothesis (2) of 11.8B is also satisfied. It is clear, however, that
{f,}x_, does not converge uniformly on [0,2].

The next result on integration of sequences, due to Fatou, is also well known. For
historical reasons it is called a lemma.

11.8D. THEOREM (FATOU’S LEMMA). Let {f,}5_, be a sequence of nonnegative-valued
measurable functions in £[a,b]. Suppose

nli_)rrolo S, (x)=f(x) almost everywhere (a<x<b). )
Then
b b
hﬂglffa f,,>fa S
if f€ £[a,b], while

b
lim inf f f,=00
a

n—oo

if f& £ [a,b].
PROOF: For any m €I we have from (1)
nli)ngo "f,(x)="f(x) almost everywhere (a<x<b).

For fixed m the sequence {"f,}_, thus obeys the hypotheses of 11.8B (take g=m).
Hence,

tim [ “nf,= [ @)

n—oo

But, for every x €[a,b], we have ", (x) < f,(x). Hence,

. bm — . . bm . . b
llmfa f,,—h'{llgmffa fn<h,‘£,l°?ffafn' 3)

n—oo

Hence, from (2) and (3) we have

o b b
h:r_lulgffa f,,>j; f.
The conclusion of the theorem follows on letting m—co.
In 7.8B we proved that if f € R [a,b] and
F(x)= ["f(yar  (a<x<b),
a

then F'(xg)=f(x,) if f is continuous at x, Since Riemann integrable functions are
continuous almost everywhere it follows that

F'(x)=f(x) almost everywhere (a<x<b). (*)
Now if f&€ £[a,b] and
F(x)= faxf(t)dt,

then it may still be proved that (x) holds even though f may not be continuous at any
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point. To establish this result, however, requires a tremendous amount of work, and we
therefore omit the proof. It is given in detail in the references at the end of the chapter.

11.8E. THEOREM. If f&€ £[a,b] and if
F(x)=["f(nai  (a<x<b),

then
F'(x)=f(x) almost everywhere (a<x<b).

Exercises 11.8
1. If feL[a,b] and if

F(x)=j:f(t)dt (a<x<b),

prove that F is continuous on [a,b].
2. If {f,}7-, is a sequence of functions in £[a,b], if

| £, (x)| < g(x) almost everywhere (a<x<bsnel)
where g€ £[a,b], if

,,li_,r&fn (x)=f(x) almost everywhere (a<x<b),
and if & is any bounded measurable function on [a,b], prove that
b b
lim h= .
fim, [ =]
3. Suppose { f,}-, is a sequence of functions in £ [a,b] such that
0< fi(x)< fo(x)< -+ < f(x)< -+ (a<x<b).

Suppose also that
nlinolof,,(x)=f(x) (a<x<b).

(a) If f€ £[a,b], show that
b b
fim [ 4=

b >
L)
a n=1
diverges to oo.

This result is known as the Monotone convergence theorem.
4. If f€L]a,b] and if, for each n=0,1,2,...,

E,={x€[a,b]|lf(x)|>n),

(b) If f& L[a,b), show that

prove that
0 .
> mE,< . (*)
n=0

[Hint: Show that mE,=mH,+mH, _ + --- where H, = {x|k <|f(x)|<k+1}. Then
AmE,=mE, ,—mE,= —mH,. Apply formula (2) of 3.8A with s, =k,b,=mE,.]

’
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5. Fornel let

)

£.(x)=0 [xe(O,%)U(—rl;,l)}‘

o (L 1
f,,(x)—2n(2n <x<n

Calculate

f [ lim £,(x)]dx and lim [ ' (x)dx.

Show that Fatou’s lemma applies but that the Lebesgue dominated convergence
theorem does not.

11.9 THE METRIC SPACE £?%[a,b]

In this section we introduce a class of functions on [a,b] that has many properties in
common with the class /2 of sequences.
11.9A. DEFINITION. Let f be a measurable function on the closed bounded interval

[a,b]. We say that f is square integrable on [a,b] if f2€ £[a, b].

Next we prove the Schwarz and Minkowski inequalities for square integrable func-
tions. (Compare with 2.10B and 2.10C.)

11.9B. THEOREM (THE SCHWARZ INEQUALITY). Let f and g be measurable functions on
[a,b]. If fand g are square integrable, the fg& £[a,b] and

Laf<(r) (0] 0

PROOF: For any x €[a,b] we have [| f(x)|—|g(x)[]* > 0. Hence,

If(x) g <H[f(x)P+[g(x)]?) (a<x<b).

Since, by hypothesis, f2 and g? are in £[a,b), it follows that | fg| € £[a,b], Hence, by
11.7N, fg€ £]a,b].
For any A € R we then have

f "Or+g)?>0
or, equivalently,
)\szf2+2}\fbfg+fbg2>0.
a a a
This can be written AN+ BA+ C >0 where

A=fabf2, B=2fabfg, c=fabg2.

If A=0, then, by 11.7M, we would have [f(x)]?=0 for almost all x in [a,b]. That is,
f(x)=0 for almost all x in [@,b). In this case both sides of (1) are equal to zero.



342 THE LEBESGUE INTEGRAL

Otherwise 4 #0. We may then set A= — B/2A4 to obtain B><4AC. But this says

b \? b b
(L))
(L) (AL
from which (1) follows on taking square roots.

11.9C. THEOREM (THE MINKOWSKI INEQUALITY). Let f and g be measurable functions on
[a,b]. If f and g are square integrable, the f+ g is also square integrable and

1/2

Lo <) (0) g

(f+g)’=rf*+2fg+g% )

By hypothesis, both f? and g* are in £[a,b). Also, fg€ £[a,b] by 11.9B. Hence, by (2)
and 11.7K, the function (f+ g)* is in £[a,b] [that is, (f+ g) is square integrable] and

[urer=["rea [ ser [ s

Using 11.9B we then obtain

frar<Lrof L o)

and (1) follows.

PROOF: We have

We next define the norm of a square integrable function.

11.9D perINITION. If fis a square integrable function on [a,b], we define || f||, as

1= ( [ bf’)m.

We are using the same notation for the norm of a square integrable function as we did
for a sequence in /2. However, no confusion should arise.

11.9E. THEOREM. The norm for square integrable functions has the following proper-
ties:

| fll2>0 for any square integrable function fon [a,b]. )]
I fll,=0 if and only if f(x)=0 almost everywhere (a<x<b). (2)
lleflla=lc|- I fll, if fissquare integrable and c € R. 3)
If+gll, < fll+lgll, if fzg aresquare integrable. @)

PROOF: Properties (1) and (3) are immediate consequences of the definition of norm.
Property (2) is a consequence of 11.7M. Fmally, property (4) is a restatement of the
Minkowski inequality 11.9C.

11.9F. We now wish to make the collection of all square integrable functions into a
metric space. If we were to proceed parallel to our treatment of /2, we would define
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o(f.8)=|f—gll, for f and g square integrable. However, unless we make one more
assumption, with this definition p would not be a metric! For according to (2) of 11.9E,
we would have p(f,g)=0 for two distinct square integrable functions f and g, provided
that f(x)=g(x) for almost all (but not all) values of x in [a,b]. In order to manufacture
our metric space we must therefore regard any two functions whose values are equal
almost everywhere as representing the same point in our space. That is, the points in the
space—which we denote by £*[a,b]—are, by definition, classes of square integrable
functions, the functions in any one class differing from one another only on sets of
measure zero.

It is, however, a time-honored custom to refer to the individual elements of £?[a,b] as
functions instead of classes of functions. Thus we speak of a square integrable function f
as being “in £%[a,b]” instead of being “a representative of a class of functions in
£ a,b),” and we write f € £[a, b].

If the square integrable functions f and g are (that is, represent) distinct elements of
£%[a,b], then || f—g|l,>0 by (2) of 11.9E. For if f and g are (that is, represent) distinct
elements of R7[a,b], then the values of f(x) and g(x) differ for all x in some set of
positive measure. Hence, if we now define p by

o(f.e)=If-2gll. (fgELa,b)), (*)

then p(f,g)>0 if f#g. The other requirements for a metric are easily verified with the
aid of 11.9E, and we have

THEOREM. If p is defined by (*), then p is a metric for £7[a,b].
We denote the metric space {£a,b],p) simply by £a,b].

Next we prove that £%[a,b] is complete. That is, we show that if { f,}%_, is a Cauchy
sequence in £%[a,b], then there exists f € £%[a,b] such that {f,}%_, converges to f with

respect to the metric of £%a,b]. This result is sometimes called the Riesz-Fischer
theorem.

11.9G. THEOREM. The metric space £%[a,b] is complete.

PROOF: Let {f }_, be a Cauchy sequence in £?[a,b]. Then, given € >0, there exists
N €1 such that
b 1/2
=] [ U= 0P < 20

For each v €/ let n, be the smallest positive integer such that

Q'

[ )= h () Pdx<gz  (mn>n). )
Then ny<ny<:-- <n,<---. In particular,
fb [fo ()= f, ()T dx<— (vel).

Let E, be the set of all x €[a,b] such that

|fn

v+ 1

(xX) =1, ()| >2772,
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Then
= [1<2 [}, (x)~f, (x)Pdx
E,

E,

<2”.f;b[fm”(x)—fm (x) Px<(3)"

For each N €1 let F be the complement of EyU Ey, ,U---. Then F,C F,C--- CFy
C---. Also, since m(EyUEy, U )<V +@E)N* '+ .-, it follows that

lim m(EyUEy,,U---)=0.

Nooo
Consequently,
o0
m( U FN)= lim mFy=b-—a.
N=1 N—oo
That is, almost every x in [a,b] is in U y_,Fy. But if x€ U §_,Fy, then, for some N, x is
not in any of the sets E,,E,_,,.... Hence, if x€ UF_,Fy, then

o0

2 [ S, () F(0)]< 22_”/2

v=1

(see 3.6A). From 3.6B it follows that
0
2 [£,..(x)=f,(x)] converges almost everywhere  (a < x<b).

v=1 \
That is,
lim ([ £,(0) =5, () ]+ [ S0 = £ () ]+ +[ £, ()= £,_(0)])
exists for almost all x in [a,b]. Thus
Jim [ £, ()= £, ()]

exists for almost all x, and hence, lim £, (x) exists for almost all x. For every such x

let

v—>00

f(x)= Jim 1, (x). @
[Let f(x)=0 if the limit in (2)'does not exist.] Then, for fixed »,
lim [ f, (x)-, (x)]2= [ £, (x)—f(x)]2 almost everywhere  (a <x<b),
p—>00 ” . 4

and so, by Fatou’s lemma 11.8D and (1), we have (f, —f)€ £[a,b] and
f [, ()= f(x)Pdx < hmmff £ ()= £, (0] dx<-——. 3)
Hence, f=(f—f,)+/, is in £2[a,b], by 11.9C. From (3) it follows that
p(£,.f)=I1, f||2<\/—_
while from (1) we have

p(J;,J;,)=|m—f",||2<—vl3: (n>n,).
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Hence,

p(fuf) <

2 (n>n),

V3

and it follows easily that { f,}-, is convergent to f. This completes the proof.
The completeness of £[a,b] has far-reaching consequences in higher analysis. If we
had only Riemann integration at our disposal, we could not prove such a result (see
exercise 7).
As the final main result in this section we prove that the set of continuous functions on
[a,b] is dense in £?[a,b]. This will be an immediate consequence of the following two
lemmas. :

11.9H. LemMMA. If fis a bounded measurable function on [a,b], then, given € >0, there
is a continuous function g on [a,b] such that || f—g||,<e.

PROOF: For x €(b,b+ 1] define f(x)=0, so that f is defined on [a,b+1]. Let
F(x)= ["f(ndt  (a<x<b+1).

Then F is continuous on [a,b+1]. [For

|F(x+h)— F(h)|= fxx+hf(t)dt < MIhl,
where M=1Lub.,,, | f(x)|.] For each n€ I let
G,,(x)=nfx"”/"f(t)dt (a<x<b). (1)
Then
G,(x)= Flct ll//n:—F(x) (a<x<b).

It follows that G, is continuous on [a,b]. By 11.8E we have

nli)rr(}0 G,(x)=F'(x)=f(x) almost everywhere (a<x<b),
and so,

Jim [G,(x)—f(x) ]?=0 almost everywhere ~ (a<x<b). (2)
From (1) we have

Gy ()i <n Y f o))

<n " "Ma=m,
and hence, )
[Gu(x)—f(x)P<(M+M)*=4M?  (a<x<b). 3)
From (2), (3), and 11.8B we have ‘
b
lim [°(G,~f)*= lim |G,~/I}=0.
a n—oo

n—oo
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Hence, given €>0, we have ||G,—f|,<e for n sufficiently large, and the lemma is
proved (with g=G,).

11.91. LEMMA. If h € £%a,b], then, given € >0, there is a bounded measurable function f
on [a,b] such that ||h—f||,<e.

PROOF: Consider first the case in which 4 is a nonnegative-valued function in

£2[a,b]. We have

Jim [h(x)="h(x)]?=0  (a<x<b).
Since 0 <"h(x) < h(x) (a < x < b), we also have

[h(x)="h(x)]’<[h(x)]* (a<x<b).
Since h*€ £[a,b], 11.8B then implies

»

lim f (h—"h)*=0.

m— o0
Hence, ||h—"h||, < e for sufficiently large m. Since "h is bounded, the lemma is proved
for the case of nonnegative-valued A.

Now if A is an arbitrary function in £%a,b], we have h=h* —h~. Since [h*(x)]?
<[h(x)P (a< x < b), it is clear that h* € £%[a,b]. By the first part of the lemma, given
€ >0, there exists a bounded measurable function f; such that ||A* — fl||2<%. Similarly,
there exists a bounded measurable function f, such that |A~ —f,|,<e/2. If f=f,—1f,,
then f is bounded and

Ih=flo=1(h* =h7)=(fi= D= I(h" = f) = (A~ = H)lI
<|hF=filla+ 1A~ = £l <e
This completes the proof.

From 11.9H and 11.91 we immediately deduce the following theorem.

11.6]J. THEOREM. If h € £ a,b], then, given € >0, there exists a continuous function g
on [a,b] such that |h—g]|,<e.
~ Theorem 11.9] states that every open ball B[h;e] about A in £?[a,b] contains a
continuous function. That is, every h € £7[a,b] is a limit point of the set of continuous
functions. In other words, the set of continuous functions is dense in £%a,b].
Our proof of 11.9J depends on 11.8E (why?). However, with more work we could have
established 11.9J without the use of 11.8E.
The next result may be easily deduced from 11.9J. We leave the proof to the reader.

11.9K. THEOREM. If h€ £%[a,b] and € >0, there exists a continuous function g on [a,b]
such that g(a)=g(b) and such that ||A—g||, <e.

FExercises 11.9

1. (a) Show that C[a,b]C £7a,b].
(b) If {f,}>=1 i1s a sequence in C[a,b] that converges uniformly to f on [a,b], show
that lim, _,,,|| f, ~ Il =0.
2. Let {f,}2_, be a sequence of functions in £2[a,b] that converges in the metric of

Pa,b] to f.
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If g € £a,b], show that
b b
lim = .
Jim [“he=[ ke

b
(Hint: Apply the Schwarz inequality to f f,i—=hHg)
a

. If f is square integrable on [a,b], prove that f € £[a,b].
. If feRa,b] and if f(¢)=0 for ¢t &[a,b], prove that

lim fab[f(x+t)—f(t)]2dt=0.

(Hint: Prove this first for continuous f. Then use 11.9J.)
. If feR¥a,b), if f(x)=0 for x &[a,b], and if

b
F(x)=j;f(x+t)~f(t)dt (— o0 < x<o0),

prove that F is continuous at 0. (Hint: Apply the Schwarz inequality to

F()=FO)= [ [f(x+0)=1()]f (0

Then use the preceding exercise.)

. If E is a subset of [a,b], then the difference set D (E) is defined as the set of all
numbers of the form x —y for x,y € E. [That is, D (E) is the set of all differences of
points of E.] Fill in the details of this proof of a famous THEOREM. If F is a
measurable subset of [a,b] and if mE >0, then D (E) contains an open interval about
the point 0.

PROOF: Let x be the characteristic function of E, and let
b
F(x)=f x(0)x(x +t)dt (— o0 < x< ).
a

(a) Then F is continuous at 0 (why?).
(b) Since F(0) >0 (why?) it follows that there exists § such that

b
F(x)=fx(t)x(x+t)dt>0 (—8<x<38).

(c) If x€(—46,8), then there exists ¢, (depending on x) such that x(zy)x(x+#,)>0
(why?).

(d) This implies that )€ E and x + t,€ E (why?).

(e) Hence, since x=(x+1ty)—1t, we have x € D(E). This proves D(E)D(—4,6).
(Proof due to A. Calderon.)

. Let r,r,,... be an enumeration of the rational numbers in [0, 1]. For each n€ 1 let J,

be an open subinterval of [0, 1] such that r,&J, and |J,| <1/2".

(a) Let x be the characteristic function of U®_ ,J,. Show that x=x? is Lebesgue
integrable.

(b) By showing that x is discontinuous at any point in the complement of U/,
show that x=x? is not Riemann integrable, and that no square integrable
function that is equal almost everywhere to x can be Riemann integrable.

(c) If x, is the characteristic function of J,U - -+ UJ,, show that

X, =X2€E R[a,b].
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(d) Show that {x,}_, converges in the metric for £%[a,b] to x.

n=1
(¢) From all this deduce that 11.9G would not be true if we dealt only with the
Riemann integral.

11.10 THE INTEGRAL ON (— c0, c0) AND IN THE PLANE

11.10A. We now define £[—o0,0]. Suppose f is a nonnegative-valued function on
(—o0,00). If fEL[—N,N] for every N €1, and if

. N
lim
N—-oo —N

o0 . N
L
In this case we write f€ £[— 0, 0].

For a function f that takes both positive and negative values, we say f € L[ — 00, 0] if
and only if both f* and f~ are in £[— 00, 0], and we define [®_ f as

S o=l

11.10B. If fis measurable on every bounded interval, it is then easy to show that
fEL[—o00,00] if and only if |f|€ £[— o0, ). Indeed, if f&€ £[— 00, 0], then both f*
and f~ are in £[— o0, 00]. Since |f]=f*+f", and

N N N _
f_N|f|=f_Nf +f_Nf :

exists, then we define [®  f as

it follows easily that

) N

tim [ |/

Noow J_ N
exists and hence, that | f|€ £[— 00, o). Conversely, if f is measurable on every bounded
interval and | f| € £[— 00, 0], then, for any ne I,

[f < i< m [N a7 1= 4.

Hence,

N

lim .

Noow J_ N
exists (and is < A). Thus f* € £[— o0, ). Similarly, f~ € £[— 0, 0] and hence, f&
£[— o0, 0].

The fact that f& £[— o0, 0] implies | f| € £ [ — o0, 0] makes the Lebesgue integral over
(— o0, c0) very different from the improper Riemann integral over (— o0, c0).

It may be shown that £[— o, 0] has all the important properties of £ [a,b]. Theorems
such as 11.8B may be demonstrated without undue difficulty for £[— o0, 0] by use of
the theorem for £[a,b). Note, however, that a function f may not be in £ [— o0, ] even
though f is bounded on (— 0, ) and f is measurable on every bounded interval. For
example, 1Z £[— o0, o0].
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11.10C. An integral of the form fwf may be defined as in 11.10A. That is,

f f= lim f

N->oo

for nonnegative-valued f, and so forth.

11.10D. We next outline the theory of measure and integration in the plane R2 The
procedure is very much analogous to that for the line. Rectangles in R? play the role of
intervals in R .

A rectangle K in R? is, by definition, the Cartesian product of two bounded intervals
I, and I, in R'. The rectangle K may contain all, some, or none of its edges, depending
on whether I, and I, are open, half-open, or closed. For example, if K=(0,1)X[l,3),
then K= {{x,y>|0<x <1,1< y <3}. Here K contains its base but none of its other three
edges. For any rectangle K we define |K| to be the area of K. This corresponds to the
length of an interval in R .

We henceforth assume that all sets under consideration are subsets of a fixed closed
rectangle T=[a,b]X[c,d]. A subset G of T is called an elementary set if G can be written
G=U,K, where the K, are a finite or countable number of rectangles and are pairwise
disjoint. (It may be shown that every open subset of T is an elementary set.) For such a
G we define |G| as |G|=2,|K,|.

For any subset E of T we define the outer measure mE as

mE=_g.l.b.|G|

where the g.l.b. is taken over all elementary sets G such that G O E. (Compare with 11.2.)
We define the inner measure mFE as

mE=(b—a)(d—c)—mE’
where £'= T — E. [Note that (b— a)(d— c¢)=|T|.] This corresponds to theorem 11.2D.
Finally, the set E is said to be measurable if mE = mE. If E is measurable, we define
the measure mE as
mE= mE=mE.
It may then be shown that the measure m on T has all the properties that we established
for the measure on a closed bounded interval.

11.10E. Our definition of measurable function is akin to that in 0.3A. If fis a
real-valued function on 7, then f is said to be measurable if for each sE€ R, the set
{{x,y>ET|f(x,y)<s} is a measurable subset of T. Properties of measurable functions
may then be developed as in Section 11.4.

A partition P of T is defined in exactly the same way as a partition of [a,b]. That is,
P={E,,...,E,} where the E, are measurable subsets of T and any two distinct E,
intersect in (at most) a set of measure zero. We may then define upper sums, lower sums,
upper integrals, lower integrals, and finally the Lebesgue integral for bounded functions.
Moreover, the proof in 11.51I that bounded measurable functions are Lebesgue integrable
carries over to bounded measurable functions on 7. The extension of the definition to
unbounded functions proceeds as in Section 11.6.

If fis Lebesgue integrable on T, we write f € £(T). If f€ £(T), the integral of f over
T is denoted by

[ [ f(x.y)dxady.
T

Such an integral is often called a double integral.
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If £ is a measurable subset of T, we may define
fff(x,y)dxdy as ff f(x9)xe (x,y)dx dy,
E T

which is analogous to 11.7F. Moreover, we can extend the double integral to functions
on all of R? in a manner analogous to that in 11.10A.

11.10F. We now take up the connection between measurable functions on
T= [a,b] X [c,d]
and measurable functions on an interval in R'. The main result is as follows.

THEOREM. If fis a measurable function on T=[a,b]X][c,d], then

1. for almost all x €[a,b] the function f(x,y) is a measurable function of y, and
2. for almost all y €[c,d] the function f(x,y) is a measurable function of x.

That is, if x €[a,b], the function g, defined by
g&()=f(xy) (c<y<d)

is a real-valued function on [¢,d]. According to (1) of the theorem, if f is measurable on
T, then, for almost all x,g, is a measurable function on [c,d]. Conclusion (2) has similar
meaning.

In practice, an integral

[ [ 1eeyydxay
T
is computed by integrating first with respect to x and then with respect to y (or vice

versa). The fact that a double integral may be evaluated by this method of iterated
integration does not follow immediately from the definition of

fff(x,y)dxdy,
T
but rather is a famous and difficult theorem called Fubini’s theorem.

FUBINI’S THEOREM. Let T=[a,b]X[c,d] and suppose f € £(T). Then
foralmostall x€&[a,b], f(x,y) isin £[c,d] (as a function of y). (1)

Hence,
d
[
is defined for almost all x. Moreover,

fdf(x,y)dy isin £[a,b] (as a function of x), (2)

and

b
[ { sepyasar= f [ f "f(x,y)dy}dx. 3)
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Similarly,

d
fff(x,y)dxdy=f [fbf(x,y)dx]dy. 4)
T c a

That is, if f is Lebesgue integrable as a function of two variables, then [f, f can be
evaluated by performing an iterated integration. It follows that if f € £(T), then the right
sides of (3) and (4) are equal.

Very often an iterated integral is given and it is necessary to change the order of
integration. This procedure can be justified by the Tonelli-Hobson theorem.

TONELLI-HOBSON THEOREM. Let f be a measurable function on 7. Then, if either of

the iterated integrals
broa
f i |f<x,y)|dy]dx
L" ¢

or

ar b
[ Lo s

exists, then f € £(T) and hence, (by Fubini’s theorem)

b d d b
f[f f(x,y)dy}dx=f U f(x,y)dx]dy.*

Thus the order of integration in iterated integrals may be interchanged if either of the
iterated integrals “converges absolutely.” Both the Fubini theorem and the Tonelli-
Hobson theorem hold for integrals over all of R2. Indeed, all the above theory of
integration on T may be extended on all of R? or to integrals [f, f where E is a
measurable subset of R2.

11.10G. Let us give an illustration of the results of this section. If f& ££[0, c0), then,
since e”“<1 if >0, the function e *f(s) is also in £[0,00) for every x>0. The
function f defined by

f‘(x)=f0°°e-x'f(z)dt (0< x < o0)

is called the Laplace transform of f.
If fand g are in £[0, 00), then the integral

Jfx=0g@a )
exists for almost all x €[0, o) and is an integrable function of x on [0, c0). The proof of

* Saying that {2[ [ 9|f(x,p)|dy]dx exists means

1. For almost all x in [a,b], the function |f(x,y)| is in £[c,d], and ~
2. The function f9|f(x,y)|dy [which is defined for almost all x by 1] is in £[a,b].

Thus, under these conditions, (5[ f9|f(x,y)|dv]dx is a real number.
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this is as follows: Define f(1)=0=g(¢) for —oo <t<0. For each real 1 we have, by a
change of variable u=x —1,

S G olax= [ |7,

and hence,

J o snas]a= [ swia " ol

-0 —

- fo | g(1)|d- fo |f ()|

The last quantity is finite, since f,g € £[0, «]. Hence, by the Tonelli-Hobson theorem,
the function f(x — ) g(¢) is in £(R?). It follows from the Fubini theorem that

|7 rx=nsa @)

exists for almost all x and is integrable. However, g(#)=0 for 1 <0 and f(x—)=0 for
t> x. The integral (2) is therefore equal to the integral (1) and our assertion is thus
proved. If f,g€ £[0,0) and if

h(x)= ["f(x= 080,

we say that & is the convolution of f and g and write 2= f,g. We have shown that A(x)
exists for almost all x and that € £[0, o).
We next prove a famous result involving Leplace transforms and convolutions.

THEOREM. Let f and g be functions in [0, c0) with Laplace transforms f and g. If
h=fxg, then h=fg. That is, the Laplace transform of the convolution of f and g is the
product of the Laplace transforms of f and g.

PROOF: For y >0 we have

/{(y)=f0°°e-y’fh(x)dx=fwe—y*[foxf(x—z)g(t)dz]dx.
0

We are integrating over a triangle in R*—namely, E={{x,)|0<<x,0<x< ).
Reversing the order of integration we have E= {{x,)|t < x <00,0<t<00}. Thus

R (y)= f 2(1)
0

=fowg(z)uwe—y<u+'>f(u)du]dz

= [eedr [ e wdu= ()] ().
0 0

We have shown that };(y)=f(y)§(y) for all y >0. Hence, l;=f§, which is what we
wished to prove. The change in order of integration may be justified by the Tonelli-
Hobson theorem (verify).

[Terp(x- t)dx]dt

11.10H. We close this chapter by remarking that the theory of measure and integration
can be carried out on a much more general class of spaces than R I R?, and so forth.
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For this more general treatment we recommend as a reference the book Real/ Analysis by
H. L. Royden (Macmillan, New York, 1968).

For the differentiation theory that goes with Lebesgue integration, and which we
summarily dispatched with the statement of 11.8E, we refer the reader to either
Functional Analysis by F. Riesz and B. von Sz. Nagy (New York: Ungar, 1955) or Theory
of Functions (2nd ed.) by E. C. Titchmarsh (Oxford, New York, 1939).

We might add that theorems on change of variable, integration by parts, and so forth,
for the Lebesgue integral, which we have not touched on, can be found in these
references.

Exercises 11.10
1. Which of the following functions are in £[0, c0)?

(@ f(x)= Si;lx (0< x < ),

(b) f()=——  (0<x<o0),
1+ x

(c) the characteristic function of

o0
U [n,n + Lz ],
n=1] n
(d) the characteristic function of the rationals in [0, ),
(e) the characteristic function of the irrationals in [0, c0).
2. If fis a nonnegative function on (0, ), if f€ R [¢,N] for every € >0,N >0, and if the
improper Riemann integral [§f exists, prove that f € £[0, co].
3. Show that if x>0, then e ~#*~! is Lebesgue integrable on [0, ). Let

r(x)=fo°°e-'zx—'dt (0< x < ).

This function is known as the Gamma function.
(a) Using integration by parts over the integral [, N], and letting e—0+, N—c0, show

that
I(x+1)=xI'(x) (0< x< ).

(b) Show that I'(1)=1,
I'(n+1)=n! (n=12,...).

4. If T=[a,b]X[c,d] and if f is continuous on T, prove that

b d
[J F(x.p)dxdy= f [ "f(x,y)dy]dx= f [ / "f(x,y)dx]dy.

T
5. Show that

fol[foxf(x,y)dy}dmfol[fy'f(x,y)dx}dy

provided f is Lebesgue integrable on [0, 1]X [0, 1].
6. Let T=[0,1]1%[0,1] and let
x2—y?
fxy)=—""=
(x?+y?)
£(0,0)=0.

(xy>E€T;{x,y>7<0,07),
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(a) Show that

[ 1endr=
0 X

2+y2 0

and hence, that

(b) Similarly, show that

1
f [flf(x,y)dedy= —%.
0 0

(c) Conclude from the Fubini theorem that f is not integrable over T.
(d) Conclude from the Tonelli-Hobson theorem that

i

f[f lf(x,y)ldy]dx does not exist.
0

0

. Let T=[—1,1]X[—1,1] and define f as

f(xp)= i—z
(x2+y2)

£(0,0)=0.

(Kxp)> €T, {x,y>#0,0)),

(a) Show that

fl f(xy)dy=0  (—1<x<I)
-1
and hence, that
! 1
f [f lf(x,y)d)‘z}dx=0.
-1 -

(b) If f were integrable over T, then f would be integrable over 7*=[0, 1] X[0,1]. In

this case
1
f [f]f(x,y)dy]dx (%)
o L70

would exist (why?).
(c) Show that

1 _-1__ X
[, Cenar=5 oy <D

and hence, that the iterated integral (*) does not exist.
(d) Conclude that f is not integrable over T even though

| | [ e |as
-1

exists and is equal to 0.
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FOURIER SERIES

12.1 DEFINITION OF FOURIER SERIES

We will be discussing the expansion of real-valued functions in terms of the functions
1,cos x,sinx,cos2x,sin2x, ... . We must first evaluate some important definite integrals
of trigonometric functions.

12.1A. THEOREM

fﬂ coskxcosnxdx=0 (k,n=0,1,2,...; k#n) (1)
LI _f7m (n=12,..)

f_ﬂcos nxdx {277 (n=0) )

f" sinkxsinnxdx=0  (k,n=1,2,...; k#n) 3)

fﬂ sinfnxdx=n  (n=1,2,...) 4)

f” coskxsinnxdx=0 (k,n=0,1,2,...). ()

-

PROOF: All these results may be easily derived from appropriate trigonometric
identities. For example,

cos(kx + nx)=coskx cosnx —sinkxsinnx,
cos (kx —nx)=coskxcosnx +sinkxsinnx.
Adding, we have

coskx cosnx =} [cos(k+n)x+cos(k—n)x].
355
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Suppose k# n. Integrating from —# to # we obtain

i =1 -
f_ﬂcoskxcosnxdx— 2f_wcos(k+n)xdx+ 2] cos(k n)xdx
1 sin(k+n)x =

2 k+n

| sin(k—n)x|"

=t Tk

=0.

-7

This proves (1). The proof of (2)—(5) is left to the reader.
12.1B. Suppose we have a real-valued function f on [— 7, 7] that can be expressed

f(x)— 0 4 2 (a,coskx + b, sinkx) (—7<x<m). (H

Let us see formally what we should expect the coefficients ag,a,,b,,a,,b,, ... to be.
If we integrate in (1), we obtain

f f(x) may+ z (akf coskxdx+bkf smkxdx) ma,.
Hence, assuming the validity of our term-by-term integration, we have
1 w
= ;f_ﬂf(x)dx. (2)

Now, for a fixed n €I, let us multiply (1) by cosnx and integrate. We have

T d ay rm d
f_ﬂf(x)cosnx x—if_ﬂcosnx x

+ 2 (akf coskxcosnxdx+bkfﬂ

-7

sin kx cos nx dx).

Using 12.1A, we see that only one of the integrals on the right is not zero—namely, the
integral

f " coskx cos nx dx

-

for k= n. Hence,
f f(x)cosnxdx a f cos’nx = ma,,
and so, for n=1,2,...,
B
ay=— f_ﬂf(x)cosnxdx. 3)

Note that if we put n=0 in (3), we obtain (2). That is why we use a,/2 in (1) instead of
a,. It may be similarly shown that

= % f_"w £(x)sinnxdx. )

Thus if a function f is representable in the form (1), we would expect the coefficients to
be found from (2), (3), (4). This leads us to the following definition.
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12.1C. DEFINITION. If f & £[— 7, 7], then the Fourier series for f is the series

%

00
> + > (aycoskx+ b sinkx) (—7m<x<m),
k=1

where
a== [ f(x)coskxdx  (k=0,1,2,...),

S i -
b= Wf_wf(x)smkxdx (k=1,2,...).
The a, and b, are called the Fourier coefficients for f. We write
a o0
f~ —29 + > (aycoskx + by sinkx).
k=1

Note that we use ~ and not =. We have not as yet shown that the Fourier series for a
function f € £[— @, 7] will converge, much less converge to f(x) for some or all values of
X.
For example, let
f(x)=0 (=7<x<0),
f(x)=1 0<x<m).
Then
1 (™ 1 rm
== =— dx.
@e=— f_wf(x)coskxdx Wfo coskxdx

Hence, ay=1, q,=0 (k=1,2,...). Also

be= [ f(x)sinkxdr= %fo‘”sinkxdx=

1 —coskw
kar ’

Thus b, =2/kn (k=1,3,5,...), b,=0 (k=2,4,6,...). We thus have

I
f~3*talr T3 tTs t

Note that at x =0 the sum of the Fourier series for fis  and hence, is not equal to f(0).

2[sinx sin3x , sinS5x

Exercises 12.1
1. A function f on [—#,7] is said to be an even function if
f(—x)=f(x) (—m<x<m).

For example, the cosine function is an even function.
A function f on [— 7, 7] is said to be an odd function if

f(=x)=—=f(x) (—7<x<m).

For example, the sine function is an odd function.
(a) Show that if fis an even function, then

f_wﬂf(x)dx=2fowf(x)dx.

(b) Show that if fis an odd function, then

f_"w £(x)dx=0.
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(c) Show that if f is an even function and g is an odd function, then fg is an odd
function.

(d) Show that fg is even if either f and g are both even or if f and g are both odd.

(e) Suppose f€ £[— 7, 7] and

BH | Q .
S~ + > (a,coskx + by sinkx).
k=1

Show that if f is even, then b,=b,=--- =0, while if f is odd, then

ag=a,=a,=---=0.

. If f is any real-valued function on [—,7] and

K

g()=f(x)+f(—x) (—m<x<m),
h(x)=f(x)=f(—x) (—7<x<m),
show that g is an even function and 4 is an odd function. Deduce that any real-valued

function on [—#,7] may be written as the sum of an even function and and odd
function.

. Find the Fourier series for each of the following functions f.

(@) fx)=-1  (-7<x<0),
f(x)=1 O<x<7).
(b) f(x)=x (—7<x<m).
© f)=lx|  (-m<x<m).
(d) f(x)=e* (—7<x<m).
(e) f(x)=sinx+cos2x (—7<x<7).

Use (e) of exercise 1 when possible.

(a) For each of the functions in (a) and (b) of exercise 3 check whether the Fourier
series at x =0 converges to f(0).

(b) Given that the Fourier series of

f(x)=|x]| (—7<x<m)
at the point x =0 converges to f(0), prove that
1 1 1 _ 7
prEte T Ty
. If the series
4 Q .
-+ kzl(ak coskx + by sinkx) (D

converges uniformly to f on [— &, 7], prove that (1) is the Fourier series for f. [Hint:
For n€ I show that

apcosnx i .
—+ > (a,coskx cosnx + b, sinkx cos nx)
k=1
converges uniformly to f(x)cosnx on [—a,7]. Then integrate to show that a, is the
nth Fourier cosine coefficient for f. Do similarly for 4,,.]

.2 FORMULATION OF CONVERGENCE PROBLEMS

12.2A. To see if the Fourier series of a function f € £[— 7, 7] actually converges to the
value of f at some fixed x €[ — 7, 7], we must investigate whether

Jim s, (x)=£(x),
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where the s, are the partial sums of the Fourier series:

sn(t)—70 z(akcoskt+b sinkr)  (—w<t<m). (1)

To express s,(x) in a more manageable form we use the definition of a,,b, to obtain

a, n
5,(%)=~ 2+ 2 (a coskx + b, sinkx)

f St z(coskx f_" 7(¢)coskt dr +sinkx f_" f(t)sinktdt)

-1 f £(2)
f )] 3

Using the identity (39) of Section 8.4 we then have

(=2 7 f(O)D, (x =1y

%+ 2 (coskxcoskt+smkxs1nkt)}d

L, 2 cosk(x—1t) |d

where*
1 n B Sil’l(ﬂ + %)l )
D"(t)_5+kglcos l—m (—oo<t< ). (2)
(The function D, is called the Dirichlet kernel.)
If we set u=x—t, we have
_ 1 X+7Tf D d 3
()= [ S (=)D, (u)d Q)
It is now convenient to extend f to all of (— o0, c0) by requiring that
fu+2m)=f(u). (4)
This defines f(u) uniquely for all values of u except [in case f(— 7)7f(7)] for u= =
3a, £5m@,... . For these exceptional values of ¥ we can define f(u) in any manner

without affecting anything concerning integrals of f. Functions satisfying (4) are called
periodic functions (of period 27). Since D, is also a periodic function of period 2, it is
easy to show from (3) that

su(0) = [ f(x=u)D, (w)du.

(See exercise 1 of this section.) Thus
5,(x)= %f_o F(x =)D, (u)du+ -:;foﬂf(x — u)D, (u) du
= %j:f(xwf-t)Dn(—— £)di+ %fowf(x— 1D, (1)dt.

Since D,(—t)= D, (¢) for all ¢, we have

5,(x)= %j:[f(x+t)+f(x—t)]D,,(t)dt. )

* For t=0, =27, +4m,... we interpret D,(¢) as n+ } so that D, will be continuous on (— o0, o).
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In the special case f=1 we have qy=2, q,=b,=0 (k> 1). Hence, s,(x)=1 for all n.
From (5) we then have

= % fo "D (1)d. 6)

Going back to an arbitrary f € £[— o, 7], we multiply (6) by f(x) and subtract from (5)

to obtain
v +0)+f(x—
s(0)=f(x)=2 f [f CEOTETD ]ty
0

We have thus shown that
Y
2

+ 2 a, coskx + by sinkx = f(x)
k=1

[that is, the Fourier series for f at x will converge to f(x)] if and only if

fim [s,()~f(x)] = lim 2 f [ JETOPIETD j | patoyar=
0

n—oo qr
where D, is as in (2).

12.2B. If f€ £} — 7, 7], then f€ £[— m, 7] (why?), so that f has a Fourier series. Since
each function coskz, sinkt is in % —7,7], it follows from 11.9C that s, € £} —7,7),
where s, is the nth partial sum of the Fourier series for f defined in (1) of 12.2A. In
addition to asking whether {s,(x)}{’_; converges to f(x) at individual points x, it makes
sense (and is very fruitful) to inquire if the sequence of £ —m,7] functions {s,}%_,
converges to f in the metric of £%[— 7,7]. That is, does

lim ||s, = f;=0?
We will see in Section 12.4 that the answer is “yes” for all f€ £ — 7, 7).

12.2C. As a final problem we ask: For what x is it true that the Fourier series of
fel[—m,a]is (C,1) summable to f(x)? That is, for what x €[ — 7, 7] is it true that

lim 5,(x)=f(x)  (C.1),
or, equivalently,
lim o, (x)=f(x)
where
So(X)+sy(x)+ - +5,_4(x ) 1)

0,(x)= y Z 5o

n

Using (5) of 12.2A we have
-1

a(0=1"5.
k=0

717Lw[f(x+t)+f(x_t):le(t)dt’
and so

o (x)-—f [f(x+1)+f(x—1)]K, (t)dr (1)
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where
B 1n—I 3 1 n—l. | B
K,(t)= " kgoDk(t)— 3nsin (1) k§0s1n(k+5)t (—o0 <1< ). (2)
Now
n—1 n n
S sin(k+4)t= 3 sin(j—4)t= 25in(2j—l)%,
k=0 j=1 i=1

and so, by exercise 8 of Section 8.4,

n=1 sin?(nt /2
kgosin(k+%)t= —sin((t//Z)) .
Thus from (2),
K(t)=——s—iM—2)— (—o<t< o). 3)
8 2nsin®(1/2)

[In particular, note that K,(¢)>0 for all ¢.] In the special case f=1, then s4(x)=1s,(x)
=...=5,_,(x)=1. Hence, from (1) we have

=2 ("
1== fo K, (t)dt. ()

Going back to an arbitrary f € £[— 7, 7], we multiply (4) by f(x) and subtract from (1).
We then have

—1(x) | K, ().

T f(x+D)+f(x—t
Un(x)—f(x)=;2;f[ (x )2 (x—1)
0

We have thus shown that
a & )
-+ > agcoskx+ by sinkx=f(x)  (C,1)
k=1

if and only if

5 fw[ fx+)+f(x—1) _ 10 K, (oyde=o,
0

Jim [,(x)=f(x)]= lim = >

n—oo q

where K, is as in (3).

Exercises 12.2
1. If feL[—a,7] and if
f(u+2m)=f(u) (—oo<u< o),
show that, for any real x,
7+ x T
f f(u)du=f f(u)du.
—mT+x -7
[Hint: Write

f_:f(u)du= f_;"”f(u)dw f:'“xf(u)du=' I+1,
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Then show that
7+ x T+ X 7+ x
L= f=2myar= [ fQydi= "7 f(u) du

and add to I,.] A picture may help.
2. f feR[—m,7] and if

b K .
f~7+ D (@.coskt+ by sinkt)  (—w<i<m),
k=1

show that

n—1

a,
o)==+ >, (1 - —:—)(akcoskt+bk sinkr)
k=1

forn=1,2,...; —o<t<a.
3. True or false?

(a) l=%j:lK,,(t)|dt (nel.

(b) 1= %fo"lpn(z)uz (nel.
4. If f is continuous on [— 7, 7] and
max |f()|=M,

—m<<I< T
use (1) of 12.2C to prove that
lo, ()| <M  (—7w<t<m).

Does your method of proof enable you to prove that
[s,()|<M (—w<t<a)?

123 (C,1) SUMMABILITY OF FOURIER SERIES

We next show that continuity at x is sufficient to ensure that the Fourier series of
fEL[—m, 7] at x be (C, 1) summable to f(x). The following theorem is due to Fejer (and
K, is often called the Fejer kernel).

12.3A. THEOREM. If f€ £[— 7, 7] and if f is continuous at x €[ — 7, 7],* then

_‘12_0+ § (a, coskx+ by sinkx)=f(x) (G, 1). (N
k=1

PROOF: Fix €>0. According to 12.2C, to prove the theorem it is sufficient to find
N €1 such that

<e (n>N).  (2)

lo, —f(x)|=

- 2

2 [0 2,
0

Since f is continuous at x we can find 8 with 0< 8 <7 such that
D) =f®I<5  (y=xI<8).

*If x=u or x=—m, by continuity of f at x we mean the continuity of f as extended via the equation

f(u)=f(u+2m).
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Thus if 0< ¢< 6, then

fx++f(x—8)—2f
OO L (xS o) + L= )= 0]
lie , ¢ €
<3(5+3)=3
Consequently,
s — ) —
%f[f(xﬂ)ﬂ(; 2 2f(x)}K()dt<_ 2 (6, (0
0
and so, by (4) of 12.2C,
8
2 fx+)+f(x—1)—=2f(x) p
—7;'/0‘[ 5 ]K"(t)dt<§ (nel). (3)
If t > 6, then K, (1)< ———— . Thus
2nsin?(8/2)
%fw[ f(x+t)+f(;—t)—2f(x) }Kn(t)dt
8

2 7
<IWST2(6/5£ [If(x+ 0+ f(x=D]+2f(x)]ar,  (4)

and so, for some N €1,

2 f"[ f(x+ )+ f(x—1)—2f(x)
8

5 }K,,(t) <§ (n>N). (5)

K

Inequality (2) then follows from (3) and (5), and the proof is complete.

12.3B. A stronger result may be proved. Indeed, with more careful estimates it may be
shown that if f € £[— &, 7], then (1) must hold for almost every x in [— 7, 7] (even if f is
not continuous at any x). The set E of points x for which (1) holds contains all points at
which f(x) is the derivative of

F(x)=f0xf(t)dt

and hence (11.8E), E contains almost every point in [ — #,7]. We omit the proof.
If we assume that f is continuous on [— 7, 7], and that f(— 7)) =f (=), we can establish
the uniform convergence of {o,}_,.

12.3C. THEOREM. If f€C[—m, 7] and if f(—7)=f(w), then {o0,}_, converges uni-
formly to f on [ — 7, 7], where

n—1

_ Sotstee s

" n
and

s, ()= —-—+ 2 (ay coskt + by sinkt).
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PROOF: Since f is continuous on the closed bounded interval [ — 7, 7], we know from
6.8C that f is uniformly continuous there. Since f(—7)=f(7), it follows that f [as
extended to (— o0, 0) by f(u+27)=f(u)] is uniformly continuous on (— o0, ). Con-
sequently, the & in the proof of 12.3A may be chosen independent of x. Moreover, from
(4) of 12.3A, we have

2 fl F(x+1)+f(x=1)=2f() 31 fll(m =)
&

w

K (1)dt| <
2 () nmsin?(8/2)

where || fl|=max_, ., .| f(x)|. Consequently, the N in 12.3A such that (5) holds may be
chosen to depend only on § and not on x. It will follow that

lo,(x)—f(x)|<e (n>N; —m<x<m),

which proves the theorem.

Exercises 12.3
1. If fEL[—a, 7] and if f is continuous at x €[ — 7,7}, prove that
a, 0
f(x)= lim | 2+ 3 (acoskx+ bysinkx)rk|.
r—l- P

12.4. THE 22 THEORY OF FOURIER SERIES

124A. If n€1, then a trigonometric polynomial of degree n is a function 7, of the
form

T,(1)=Ay+ kEI(Akcoskt+Bksinkt) (—w<t<m), (1)

where 4,,...,4, and B,,...,B, are real numbers. Every trigonometric'polynomial is in
£ —a,7]. We will now prove that if f€ £[—7,7], then the trigonometric polynomial
closest to f (in the metric for £ — =, 7)) is s,—the nth partial sum of the Fourier series
for f.

THEOREM. Let f € £ — 7, 7] and let T, be any trigonometric polynomical of degree n.
Then

If= Tall2> 11/ = sullz 2)

where
s,,(t)=%+1§l (ay coskt + by sinkt) (—7w<t<m)
and the a,,b, are the Fourier coefficients of f.
PROOF: For any T, let
1=1 [T ST, (]

Then VaJ =] f— T,|l,, and so we must prove that J is a minimum when 7, =s,. We
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have
L7 2 1 ("
J= Wf_wf Wf_WfT,,+ wf_,”T"' 3)
If T, is as in (1), then
1 1 (7, N 1 7 1 7 :
;[_ﬂan=A0;7—f_"f+Z(Ak-;f_wf(t)cosktdt+ Bk';f_”f(t)smktdt)
and so
1 (™ 4
_f fT,=Agag+ X (Aa,+ Biby). 4)
TSy k=1

Also,

LT gal 1" _1
wf_,,T"_ 7Tf_ﬂT,,(r)T,,(t)dt— ”f

n
| Ao+ X (A;cosjt + B;sinjt)
Jj=1

n
Ao+ > (Akcoskt+Bksinkt)]
k=1

dt.

We can compute the integral on the right by use of 12.2A. This yields
. n
17122243+ 3 (a}+B)) (5)
TJ—7 k=1
Substituting (4) and (5) into (3) we obtain
T n n
J= %f f2=240ay=2 X (Aga,+ B,b) +2A45+ X (A} + BY).
-7 k=1 k=1

Adding and subtracting

a2
20 + 2 (ak-i-bk)

and doing some algebra, we have

T M %
_1 f 2

{2(Ao_@) 2 [(Ak_ak)2+(Bk_bk)2]]' (6)

20 + 2 (aZ+ b2

The quantity in braces cannot be negative, and so J will be a minimum if we let
Ag=ay/2,A,=a, (k=1,...,n),B,=b, (k=1,...,n). That is, J will be a minimum if
T,=s,, which is what we w1shed to show.

The following corollary is very important.

12.4B. COROLLARY (BESSEL’S INEQUALITY). If f&€ £} —m,7] has Fourier coefficients
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a,, by, then
2

0+ 2 (a2 +b7)< lf 12 ()

In particular, the series =¥_, (a? + b,f) converges.

a

PROOF: If we set Ay=a,/2, A,=a,, B,=b, in (6) of 12.4A, we obtain

1= T msy= g [T -

The integral on the left is nonnegative, and hence, the right-hand side is nonnegative. It
follows that

—+ 2 (ak+b,f) (2)

a5

= + Z(ak+bk = s 3
Since the right side of (3) is independent of n, we may let n—o0 and obtain (1).

We next show that if f € £[— 7, 7], then the Fourier series of f converges to f in the
metric for 2% — o, 7). That is,

12.4C. THEOREM. If f€ £} — =, 7], then
Jim |5, —f1l,=0, ()

where

a n
s,,(t)=70+k21 (a, coskt + by sinkt) (—w<t<m).

PROOF: By 119K, given €¢>0 there exists a continuous function f* such that
f*(—m)=f*(7), and such that

If=f*1.<5 - )

By 12.3C we know that {g;}}5_, converges uniformly on [— 7, 7] to f*, where
Sgt+ sy

n—1
oy =
n

and the s} are the partial sums of the Fourier series for f*.This uniform convergence
implies that

lim ok, = f*],=0,
and so, for some N €1,

lofei=f*h<3  (n>N). 3)
From (2) and (3) we have

| f= ol <e (n>N). 4)
But
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is a trigonometric polynomial of degree n. Hence, by 12.4A,
I f=sall2 <I1.f= o741l
From (4) we thus have
If=s,ll,<e  (n>N),

which implies (1), and the proof is complete.

We emphasize that theorem 12.4C deals with convergence in the metric of 22— 7, 7).
From (1) it does not necessarily follow that lim,_, s, (x)=f(x) for any particular x.
Here are two important consequences of 12.4C.

12.4D. coroLLARY. If the Fourier coefficients q, (k=0,1,2,...) and b, (k=1,2,...) of
f € L= m,7] are all 0, then f=0.*

PROOF: Since all the g, and b, are equal to 0, it follows that s, =0 for every n € I. The
corollary then follows immediately from 12.4C.

12.4E. coroLLARY. If f and g are two functions in £ — #,7] that have the same
Fourier coefficients, then f=g.}

PROOF: Under these hypotheses, f—g is in 22— #,7] and the Fourier coefficients of
f—g are all 0. Apply 12.4D.

In 124B we showed that if @, (k=0,1,...) and b, (k=1,2,...) are the Fourier
coefficients of f € ¥ — 7, ], then
2

-+ 2 (at+bf) < . (*)

n=1

We now prove the converse—namely, that if {a,}¥-, and {b,}¥., are sequences of
numbers satisfying (), then there exists a function f€& £} —u,7] whose Fourier
coefficients are the g, and b,. In somewhat different terminology, 12.4B states that if
fER —m, 7], then {a,}¥_o and {b,}_, are in (2. What we now prove is that if {a,}%_,
and {b,}¥., are any sequences in %, then they are the Fourier coefficients of some
f € R} — 7, 7). Note that the proof makes use of the completeness of £[— «,7] (theorem
11.9G). There is no corresponding theorem for Riemann-square-integrable functions.

12.4F. tHEOREM.Y If {4}~ and {b,}%-, are any sequences of real numbers such that

2
7+ > (@ +b7)< 0, (1)

n=1

then there exists f € £2[ — «, ] whose Fourier coefficients are precisely the a, and b,.

PROOF: For each n €I define the trigonometric polynomial s, as

a n
sn(t)=70+k21 (aycoskt+b,sinkt)  (—m<t<m). )

* That is, f is the zero elements of £2[— 7,] or, equivalently, f(x)=0 for almost every x in [~ 7).
+ That is, f(x)=g(x) for almost all x.
+ This theorem is also known as the Riesz-Fischer theorem.
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If m < n, then

T 2
LM —s 2=t S i
77[_,,(3” 5,,) '”f [ > (aycoskt+b,sinkt)| dt,

k=m+1

and application of 12.1A yields
1 ™ 3
o) Gmsi= 3 (a+id),

k=m+1

The left side is equal to (1/7) ||s, — s,,/13- In view of (1) we see that {s,}*_, is a Cauchy
sequence in £’ —a,7]. Hence, by the Riesz-Fischer theorem 11.9G, there exists a
function f € £2[1 — «, 7] such that

Jim s, = fll;=0.
For any j=0,1,2, ... it follows that

lim 1 "5, (nycosjrdr=1 [ f(o)cosjra 3)

n—oo q J _

(see exercise 2 of Section 11.9). But if n >, it follows from (2) and 12.1A that

1 (7 .
;f_ws"(t) cosjtdt= a,.
Hence, from (3) we have

1 (7 . .
¢1j=;f_ﬂf(t)c0811dt ) (j=0,1,2,...).

This shows that the g; are the Fourier cosine coefficients of f. It may be shown similarly
that the b, are the Fourier sine coefficients of f, and this will complete the proof.

Exercises 12.4

1. If f€ LY —7,7] and
a, 2]
f~7° + > (a, coskt + b, sinkt),
k=1

prove that
2
1 [ a Q&
L=t 3 (a2+ )
(This is called Parseval’s equality.) (Hint: Apply 12.4C to (2) of 12.4B.)
2. Apply the result of exercise 1 to
f(H)=t (—7<t<m).

Deduce that

1 1 1 1 _a?
]2+22+32+ +n2+ =5
3. Apply Parseval’s equality to the function after 12.1C to show that
2
L -I_ _.l_ + e = ZT_

12 32 52 8
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4. Is the series

o0
2cosnx (—7<x<m)

n=1 \/;

the Fourier series for some function in £ —7,7]?
5. Is the series
D COS nx

—nT<XKT
s (Cm<aso)

n=1
the Fourier series for some function in £ —7,7]?
6. (a) If f€ R — o, 7] and

a, o0
f~7°+ S (a,coskt+ b, sinki),
k=1
prove that
lim @, =0= lim b,. (%)
k—o0 k— o0

(b) Prove that (*) holds even if we assume only that f€ £[— =, 7].

12.5 CONVERGENGE OF FOURIER SERIES

We have not yet established anything about the convergence at a point x of the
Fourier series of a function f € £[— &, 7]. The conditions sufficient for convergence that
we will give involve the existence of the left- and right-hand limits lim,_,, f(¢#) and
lim,_,_ f(¢) and the existence of generalized right-and left-hand derivatives of f at x,
which we now proceeed to define.

12.5A. For any real-valued function f on R' the definition of lim,_, , f(¢) and
lim,_,_ f(r) was given in 4.1F. We recall from 6.9E the notations f(x+) and f(x—)
defined as

f(x4)= fim f(0; f(x=)= lim f(0),

provided the one-sided limits in question exist. [Thus f is continuous as x if and only if
f(x+) and f(x—) both exist and are equal to f(x).]

12.5B. DEFINITION. If xE€ R! and if f is a real-valued function such that f(x +) exists,
we define f/(x), the generalized right-hand derivative of f at x, as

S f(x+)
L
provided the limit exists. Similarly, f/(x), the generalized left-hand derivative of f at x, is
defined as
f()—f(x—
fi (x)= lim ——( )~ S(x7) .
t>x— I—x

For example, suppose
f(H)=1+¢ (r>1),
f(H)=17,
f(H)=312 (r<D.
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Then f(1+)=Ilim,_,, f(!)=lim,_,, (1+¢)=2. Moreover,

(1+1)—-2
fh= Im ==

Similarly, f(1—)=3 and f/(1)=6 (verify). In this example, both f/(x) and f/(x) exist at
x = 1. Note that f is not continuous on the right or on the left at x=1. Hence, f does not
have an ordinary derivative on the left or on the right at x=1. :

Before we can prove our theorem on the convergence of Fourier series, we need a
well-known and important result. It states that the Fourier coefficients q,,b, of a
Lebesgue integrable function must approach zero as k—o0.

12.5C. THEOREM (RIEMANN-LEBESGUE). If f€ £[—m, 7] and if {a,}¥_, and {b,}%-, are
the Fourier coefficients of f, then

lim a, = 11m —f f(t)cosktdt—O @))
k—o0

and
lim b, = lim —f S (t)sinktdt=0. ()

PROOF: Fix €>0. From the definition of (7 f it is easy to show that there is a
bounded measurable function g on [ — &, 7] such that

S 1r0=s0lai< Q)

(See exercise 9, Section 11.7.) Now g€& R —7,7] since g is bounded and measurable.
Hence, by 12.4B,

S (43+B) <o, @
k=1
where
Ak=lf" g(t)coskt d, Bk=lf" g(1)sinkdt.
From (4) it follows that %_, 47 <oo and hence, that lim,_ 4, =0. Thus there exists

N €1 such that
<5 (k>N). (5)

But, for any k,

3 [—

f_:[f(t) —g(#)] coskt dt

<3 [ 1rw-s@la.

|ak_Ak|=‘
and hence, by (2),
=<5 (kET). (6)
Now
a=(a,—A)+ Ay,
la | <la, = A |+ 1A,
and hence, using (5) and (6) we obtain
la,| < e (k>N).
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This proves (1). Equation (2) may be established in the same manner to complete the
proof.

As an easy consequence we have the following corollary.

12.5D. coroLLARY. If o€ £]0,7], then

lim [ @(t)sin(k+1)rdi=0.
0

n—oo

PROOF: Define ¢(#)=0 for — 7 < ¢<0. Then p&€ £[— 7, 7]. Since
sin(k + §)t=sinkt cos % +cosktsin é
we have

fﬂqa(t)sin(k+%)tdt=f {q)(t)cos%]sinktdt+f [(p(t)sin%}cosktdt.
0 -

But @(f)cos(¢/2) and @(f)sin(¢/2) are functions in £[—a,7]. Hence, by 12.5C, both
integrals on the right approach 0 as k—o0. The corollary follows.

Here is our theorem on the convergence of Fourier series.

12.5E. THEOREM. Let f€ £[—m, 7], and let x be any point in [—x, 7). If f(x+) and
f(x—) exist, if*
flx+)+f(x=)
fx)= —, (1)

and if f/(x) and f/(x) exist, then the Fourier series for f at x will converge to f(x).

PROOF: According to what we showed in 12.2A, to prove that the Fourier series for f
will converge to f(x) we must show that

lim gfw[ A AL b —f(x)|D,(t)dt=
0

n—.oo T 2
where
sin(n+ 3)t
D () m (—OO<I<OO).

In view of (1), we must show

lim —f ([f(x+0)=f(x+)]+[f(x=0)—=f(x=)]} D,(t)dt=0,
or
lim 1 [“p(t)sin (n+4)rdi=0 )
0

n—o00

where

<p(t)={[f(x+t)—f(x+)]+[f(x—t)—f(x—)]}~m—:m O<t<m). (3)

* If x=a, then f(x+)=f(w+) is computed using the values f(¢) for 1 > 7 obtained by our extension of f via
the equation f(u+27)=f(u). A similar remark applies to x= —a.
Note that (1) will hold if f is continuous at x.
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Writing ¢(¢) in the form
[Sxrn—f(x+)  fx=0)—=f(x—) t
q)(t)_[ 1 + ! " 2sin(1/2)

we see that lim,_,, ¢(£)=f(x)—f/(x), and so ¢ is “well behaved” near t+=0. More
precisely, ¢ is bounded on (0,8] for some § > 0. But from (3) it is clear that ¢ is Lebesgue
integrable on [§,7] since f € £[— =, 7], and 1/[2sin(z/2)] is bounded on [8,7]. Hence, ¢
must be Lebesgue integrable on [0, 7]. Corollary 12.5D thus implies that (2) holds, which
is what we wished to show.

(0< < 7),

Actually we have proved a little more than was stated in 12.5E. For 12.5E states that if
F(x+),f(x=),f/(x).f/(x) exist, then
i x+)+f(x—

D4 > (aycoskx+ by sinkx = flx+) +f(x=) (*)

2 2 2
provided that f(x)=[f(x+)+f(x—)]/2. However, the value of f at the single point x
cannot affect the values of @, and b,, and hence, cannot affect the left side of (). Hence,
(*) must hold even if f(x)#[f(x+)+f(x—)]/2. That is,

12.5F. coroLLARY. Let fEL[—a,7] and let x be any point in [—a,7]. If
f(x+),f(x=),f/(x).f/(x) exist, then the Fourier series for f at x converges to the value
[f(x+)+f(x—)]/2. [That is, (*) holds.]

For example, let
f(x)=0 (—7<x<0),
f(x)=1 0<x<m),
and suppose f(u+2m)=f(u). Then f/(7) and f/(w) exist and f(w+)=0,f(7r—)=

1
According to 12.5F, The Fourier series for f at x=o will converge to (0+1)/2=1.
Indeed, at the end of Section 12.1 we saw that the Fourier series for f is

271 T3t

which does converge to 3 when x=a.
Note also that if x=a/2, then the series becomes

1 2[sinx sin3x _ sinSx ],

1,2 1 1
2+:;]:1—§‘+5 ]
By 12.5F, this series must converge to [ f(7/2+)+f(7/2—)]/2=1. That is,
1,201, 1
1‘2+WP 3*s }
or
7L, 1 1,
iR T A

12.5G. On the subject of convergence and summability of Fourier series, there are
theorems much stronger than the ones we have presented. These theorems require results
on the Lebesgue integral that we have not developed. We refer the reader to G. H.
Hardy and W. W. Rogosinski Fourier Series, Cambridge, 1944.
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12.5H. We emphasize that continuity at a point s is not sufficient for the Fourier series
of a function f € £[— #, 7] to converge to f(x). Indeed, there exists a function f which is
continuous on [— 7,7] but whose Fourier series diverges at each point in a dense subset
of [—a,7]! See Section 12.7.

Exercises 12.5

1. Suppose f,g € £[— 7, 7] and suppose there exists § >0 such that
f()=g(1) (x—06<t<x+9)

for some x €[ — 7, 7).
Show that the Fourier series for f and g either both converge at x or both diverge at
X. ’
2. Show that the Fourier series for

/2
f(t)=2- (—7m<t<m)

] _1\n+l

2 (—=1)"" cosnt
BN

—_1_1

1
12 12 22 + 32 42
(b) Use Parseval’s equality to show that

3. (a) Use the Fourier series for f(¢)=|t|(— 7 <t <) to find the sum of
1 1 1 1
ErREteTET
(b) Calculate the sum of

12.6 ORTHONORMAL EXPANSIONS IN £2[a,b]

In this section we put some of the results on the £2[ — &, 7] theory of Fourier series in a
more general setting. We first introduce the notion of the inner product of two functions
in £[a,b]. This inner product has many of the properties of the inner (or dot) product of
two vectors.

12.6A. DEFINITION. If f,g € £¥a,b], then we define (f,g), called the inner product of f
and g, as

(fe)= [ *f(0) g (rya
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Thus || fll,=V(f.f) for any f€ £[a,b]. (This corresponds to the fact that the square
root of the inner product of a vector with itself is the length of the vector.) It is easy to
verify the following result.

12.6B. THEOREM. The inner product has the following properties:

(fe)=(sf) (f8ELa,b]), (1)
M.g)=\(f.g)  (AER;fgELa,b]), )
(f+gh)=(fh)+(gh)  (fghEL[ab]), (3)
(£)>0  (fe[ab]), @
(£,f)=0 if and only if f=0.* 5)

We next define orthogonality in the same manner as for vectors.
12.6C. DEFINITION. If f,g € £7[a,b], then we say that f and g are orthogonal if (f,g)=0.

Thus from 12.1A we see that the functions coskx and cosnx are orthogonal on [ — 7, 7]
if k% n. For

m
(coskx,cosnx)= f coskxcosnxdx=0.
-7

The object in £%[a,b] that corresponds to a set of unit vectors that are mutually
orthogonal is called an orthonormal family.

12.6D. DEFINITION. The countable family ®={q,,@,...} of functions in £*a,b] is
called an orthonormal family in £7[a,b] if

b
(<Pk,%)=f¢k%=0 (k,n=1,2,...;k+#n),
a

b
(P = [ @2=1 (1=12,...).
a

Thus if ||g,||,=1 for all n, and if every two distinct members of ® are orthogonal, then
® is an orthonormal family.
For example, if T denotes the family

V2r Vo Vo  Va  Vx V=
then theorem 12.1A shows that T is an orthonormal family in £[— 7, 7].
As another example, consider the family L={L,L,,L,,...} of Legendre functions.
Here

_{ 1  cosx sinx cos2x sin2x cos3x }
= seee [

L,,(x)=——i—‘—2-;,mﬁ(x2—l) (-1<x<L;n=0,1,2,...).

It may be shown that L is an orthonormal family in £2[—1,1].
Another well-known example is the family R={ R, R,,...} of Rademacher functions.
Here

R, (x)=sgn(sin2"rx) 0<x<1;n=0,1,2,...),

* Remember that f=0 means f(x)=0 for almost all x in [a,b].
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where the sgn function is defined as
sgna=1 (a>0),
sgna=—1 (a<0),
sgn0=0.
For example, R,(x) takes the value +1 on the intervals (0,3) and (%,2) and takes the

value —1 on the intervals (4,%) and (2,1), while R,(0)= R,(3)=R,(23)= Ry(3)=Ry (1)
=0. It may be shown that R is an orthonormal family in £%0, 1].

12.6E. Let ®={g,,¢;...} be an orthonormal family in £%a,b]. Suppose that a
function f € £%[a,b] may be represented as

o0
f= 2 am=co+cp,+
k=1

where ¢,,c,,... are real numbers. The series must be intrepreted as lim,_ 3% _ ¢, @
where the limit is taken in the metric for £%a,b].

Let us see formally how to compute the coefficients ¢,,c,,..., in terms of f. Taking the
inner product with ¢, we have

0

(frpn)= 2 (P> Pn)-

k=1

But since ® is an orthonormal family, we have (¢, ,)=0 for k% n, and (¢, ¢,)=1 for
k= n. Hence,
(f>®a)=Cpn

This leads us to the following definition.

DEFINITION. Let ®={q,,,,... }be an orthonormal family in £%[a,b). If f € £’a,b] and
if
=)  (KEID),

we call the ¢, the generalized Fourier coefficients of f. The series 7 ,¢, @, is called the
generalized Fourier series for f, and we write

o0

f~ 2 Cr Py

k=1

For example, if [a,b]=[— 7, 7] and we take

(I)=T={ 1 cosx sinx }
V27 Vo Vao

then the generalized Fourier series for f € £ — =, 7] is the series

). 1 +(f, cosx)cos_x_'_(f’ sinx)sinx+
V2rn Va / Va Va | Vo

” 1 1 m Cos x COS X
. d d
(f—ﬂf(X) V2 X) V2a +(/;wf(X) Vo X) Vo

Sln
(f Uy )v;+

1
(f’ N

or
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or
9
2
That is, in this special case where ®= T, the generalized Fourier series for f € £ — 7, 7]
is precisely the (ordinary) Fourier series defined in 12.1C. Thus the preceding definition
is a bona-fide generalization iof 12.1C. Note, however, that with respect to T the
generalized Fourier coefficients of f € £ — 7] are

ayV7/2 ,a\V7 ,b,Vm ,a,V7 b,V ,....

+a;cosx+b;sinx+---.

12.6F. We will now generalize 12.4B. If ®={¢,,¢,,...} is an orthonormal family in
£’[a,b], then a function T, of the form

T,=d\@,+dyp,+ - +d,9, (1
(where d,...,d, are real numbers) will be called a ® polynomial of degree n. We first
show that if f€ £?[a,b], then the ® polynomial that is closest to f (in the metric of

£7[a,b]), is s,—the nth partial sum of the generalized Fourier series f. This generalizes
124A.

THEOREM. Let f € £[a,b] and let T, be any ® polynomial of degree n. Then
1= Toll2> 1 f = $,ll )

where s, =c,p,+ - -+ +¢,p, and the ¢, are the Fourier coefficients of f,
=) (k=1,...,n).

PROOF: For any T, let J=| f—T,||3. We must prove that J is a minimum when
T,=s, We have, using 12.6B, .

J=(f=Tf=T,)=(£)-2(/.T,) +(T, T,). (€)
If T, is as in (1), then
(f’ Tn)=(f’dl(pl+ T +dn(pn)= d}(f,‘P])"' e +dn (f>(pn)’

and so

AT)= S dee )

k=1
Also

(Tn’ Tn)=(dlq)l+ et dnq)n’dl¢l L d,,(P,,)
=di(ppd o+ +d, @)+ +d, (9, di 0 +4d,9,).
Since (¢, ¢,) =0 for j#k, and (¢, ) =1, we obtain

(T, T,)= 2 4 (%)
k=1
Substituting (4) and (5) into (3) we have
n n
J=(£)-2 2 d+ X 4.
k=1 k=1
Adding and subtracting =% _,cZ we obtain

J=(Lf)- é i+ él (d = ci)’. (6)

1
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From (6) it is clear that J will be a minimum if d,=c, (k=1,...,n). That is, J will be a
minimum when 7, =s,, which is what we wished to show.

As an immediate corollary we have the following inequality.

12.6G. BESSEL’S INEQUALITY FOR GENERALIZED FOURIER SERIES. Let ®={¢,,¢,,...} be
an orthonormal family in £%[a,b). If f € £*[a,b] and if

a=(he) (KkED),
then

S 2
2 c<IfII3
k=1

PROOF: If we set d, =¢, (k=1,...,n) in (6) of 12.6F, we obtain
I=0f=sB= ()= 3 )
Since || f—s,||5> 0, this implies
3 @<¢n=isk

The conclusion follows on letting n—o0.
If [a,b]=[—=,7] and

(I>=T={ 1 cosx sinx }
V27 Vo Va

then we have shown in 12.6E that the generalized Fourier coefficients of f & £ — o, 7]
become

aovg ,al\/—; ,b,\/; ,az\/_v; ,bz\/; eee s

By 12.6G, it follows that the sum of the squares of these coefficients is less than or equal
to || f|I3- That is,

T 2 S (2 52 7

2
5a0+ wkgl (ag+b7) <f_ﬂf .
But this is precisely 12.4B!

Theorem 12.4F can be generalized as follows.

12.6H. THEOREM. Let ®={¢,,¢,,...} be an orthonormal family in £Ha,b). If {c )%y
is any sequence of numbers such that

o0
2 cr< oo, )]
k=1

then there exists f€ £a,b] such that the generalized Fourier coefficients of f are
precisely the ¢,—that is,

= (f ) (keT).
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Moreover, for this f,lim,_, _||s, —f|l,=0, where

n
S = 2 Cr Pr
k=1

PROOF: If m < n, then the fact that ® is orthonormal shows that

n 2

2 CrPr

k=m+1

n

-3 &

2 k=m+1

150 = $yall2 =

This and (1) show that {s,}%_, is a-Cauchy sequence in £ —#,7]. Hence, by 11.9G,
there exists f € £%[a,b] such that

Jim s, ~ /1, =0.
By exercise 2 of Section 11.9 it follows that
lim (s, 9)=(fe)  (KET). ®)

But, if n>k, then (s,,@)=(c;p,+ - + @+ - - + ¢, 9, 9) = ;- Hence, from (2), we
have
=(f o) (keT),

and the theorem is proved.

We have not generalized theorem 12.4C to arbitrary orthonormal families for the
simple reason that it is not true for arbitrary orthonormal families. If ® is an
orthonormal family in £*[a,b], then ® must have a special property to ensure that the
generalized Fourier series of every f € £%a,b] will converge to f in the metric of £¥a,b].
This property, which we now define, states that ® must not be a subfamily of a larger
orthonormal family. )

12.61. DEFINITION. If ®={¢,,@,,...} is an orthonormal family in £?[a,b], then ® is said
to be complete* if the only function h&€ a,b] that is orthogonal to all the g,
(k=1,2,...)is h=0.

That is, ¢ is complete if
(h@)=0  (k€EI)

implies 2=0. In other words, if ® is a complete orthonormal family in £*[a,b], then the
only function in £%a,b] whose generalized Fourier coefficients are all zero is the
function that is equal to zero (almost everywhere).

From 12.4D it follows that the family

T=[ 1 cosx sinx }
Viz Va Va

is complete. It may be shown that the family L of Legendre functions is also complete
(in £ —1,1]) but that the family R of Rademacher functions is not complete (in £7[0, 1]).

For complete orthonormal families we may generalize 12.4C. This generalization is a
corollary to the following result.

12.6]. THEOREM. Let ®={q,,¢,,...} be an orthonormal family in £*a,b). Then if ®

* This use of the word “complete” as applied to orthonormal families has nothing to do with “complete” as
applied to metric spaces in 6.4A.
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has any one of the following properties, it has them all.

(a) ® is complete.

(b) The set of all ® polynomials (of all degrees) is dense in £7[a,b].

(c) For any f € £[a,b] the generalized Fourier series for f converges to f in the metric
of £%[a,b]. [That is,

Jim 15, fll,=0
where s, =23 _ ¢, 9, and ¢, =(f,¢,).]
(d) If f € £%[a,b], then
If3= 2 ¢
k=1

where ¢, =(f,¢,). (This is called Parseval’s equality.)

PROOF: I. (a) implies (b).
Assume (a) is true. For any f € £%[a,b] let ¢, =(f,q;) (k €I). Then

2 i<,
k=1
by 12.6G. Theorem 12.6H then shows that there exists g € £%[a, ] such that
Jim ||s, =gl =0 (1)
where s, =23% _ ¢, @, and such that
a=(8w) (KEI).
Thus ¢, =(f,¢,)=(g,9,) and so
(f~&9)=0 (k€EI).

Since, by assumption, ® is complete, it follows that f—g=0. Hence, from (1),
lim,_ |ls,—fll,=0. This shows that f is a limit point of the set of all & polynomials,
which implies (b).

I1. (b) implies (c).

If (b) is true, then for any f € £?[a,b] and any € >0 there exists a ® polynomial T of
degree N such that | Ty — ¢||, <e. From 12.6F it follows that

sy =Sl <e
If n> N, the sy =sy+0-@y,+ -+ +0-q, is also a ® polynomial of degree n. Hence, by
12.6F,
lsi=flla<llsy=Sfll,  (n>N).

We thus have ||s,— f||<e (n> N), which proves that (c) holds.

III. (c) implies (d).

Suppose (c¢) is true. If f € £?[a,b], then (c) implies

. _ 2=
Tim |15, ~ f]3=0. @
But, by () of 12.6G, we have
If=sul3= 1113~ 2 -
k=1

Letting n—o0 and using (2) we prove (d).
IV. (d) implies (a).
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Suppose (d) is true. If 4 is any function in £7[a,b] such that
(ho)=0  (k€I),

then, by (d), we have ||h|3=2%_,(h,9,)*=0. Hence, h=0. This proves that (a) is true.
The proof of the theorem is now complete.

Exercises 12.6

1. Calculate the Legendre functions L, L,, L, and show that they are orthogonal to one
another on [—1, 1] and that each has norm equal to 1.

2. Do the same for the Rademacher functions R, R,, R;.

3. Let ®={q,,,,...} be a complete orthonormal family in £%[a,b]. Define the function
A from £¥a,b] into  as

A(N)={c)rur (fE Bz[a,b]),

where ¢, =(f,,) (kEI).
(a) Show that 4 is 1-1.
(b) Show that 4 maps £7[a,b] onto 2.
(c) If f € £¥a,b], show that || f]|,=||4(f)|l, (Where the second norm refers, of course,
to £2)

12.7 NOTES AND ADDITIONAL EXERCISES ON CHAPTERS 11 AND 12
I. A continuous function whose Fourier series diverges at a point

12.7A  We will need to use notation a bit more complicated than in previous sections.
Suppose f € £[— 7, 7] and

— + > (a,coskt+ b,sinkt). (*)
k=1
We let
a n
s,,[f;x]=—29+ > (aycoskx + by sinkx)

k=1

so that s,[ f; x] is precisely what we have been previously denoting as s,(x). Similarly, let
1 n—1
o, fix]= m Esk[f;x].
Thus

s fix]= 1 [7 FD, (x=wa

o, fix]= ;lr-f_ﬂ f(W)K, (x——~u)du

where D, and K|, are defined in Section 12.2.
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EXERCISE: If fis as in (*), show that
1. % C k .
o"[f,x]_7+,§|(l_;) (ag coskx + by sinkx).

12.7B Here is the result on nonconvergence:

THEOREM. The exists f € C[— o, 7] whose Fourier series diverges at 0.
This will follow from a sequence of lemmas.

EXERCISE:  Prove in detail the following lemmas.

LEMMA 1. The sequence {[|D,(?)|dt}-, is unbounded. Specifically,

f"w,,(t)|dz>310gn (nel).
0 T

SKETCH OF PROOF:

7 7Isin(n+ 1)t
le,,(t)|dt>f L——(t—z—)—ldt
0

0

m(n+1) |sinu < k
=f Jsinu| |du> E —1—f " |sinu|du>glogn.
u kw J g - T
0 k=1 (k= Dym

This behavior of the D,, in contrast with that of the K|, is what sometimes causes
convergence to fail, whereas (C,1) summability for continuous functions always
succeeds.

LEMMA 2. For each n€ [ there exists g, € C[— 7, 7] such that

lgll= max | g (x)|=1
and

1
|5a[ 83 0] > logn.

SKETCH OF PROOF: Fix n. Let
h(x)=1 if D,(x)>0,
h(x)=—1 if D,(x)<O0.
Then h is a “step function” and (7 h(?)D,(t)dt=(",|D,(t)|dt. Let g,=h except in

small intervals around the discontinuities of 4. In these intervals let g, be linear so as to
make g, continuous. If the total measure of these intervals is €, then

[ e Du = [ () D, (0] <e(n+3)

so that, if € is sufficiently small,
|7 20D, (1)> 2 logn.
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Finally, note that

1 T
s 8:0]= [ &) D, ().

LEMMA 3. For each n €1 there exists a trigonometric polynomial ¢, of degree n? such
that

gall = max [o,(x)|<1
xe[ —m,7)

and

1
Sa[ a3 0] >—7—77 logn—2.

SKETCH OF PROOF: Fix n. Let
¢n(t) = 0"2[ &n> t]

where g, is as in lemma 2. If

Ao & .
g~ + > (A, coskt+ By sinki),
k=1

then
b, (2) =70 2( )(Akcoskt+Bks1nkt)
so that
Su[Pnit]= 2 ( )(Akcoskt+ B, sinkt).
Hence, )

|3,[ @05 0] = 5[ £30]1=

from which the lemma follows.

1 n
— 2 k4,|<2
n" k=1

Now let A,=2% and define

[ee]

F0=2 o) (<<,

n=1

Then f &€ C[— 7, 7] (why?) and so the theorem will follow once we have proved

LEMMA 4. We have

sxg[f;O]—aoo as n—o0.

SKETCH OF PROOF: Fix n. We will consider
sl oy N1)s1]
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first for j > n+1, then for j < n—1, and finally for j=n. Now if
! Y .
e ()~= + > (a,cosmt+b,,sinmt)
m=1

(where the a,, b, depend, of course, on j), then

N t)~ 2 (a,,cos m\;t+ b, sin mAt).

If j> n+1, then the Fourier series for ¢, (A;¢) consists of the constant term and terms
involving coskt, sinkt for some k > A; >N Hence

s,‘z[%j()\jt); O] =the constant term,

so that
S SR
sl 2 n000|< X 1
Jj=n+1 Jj=n+1l

Next, }f j<n-—1, then by, (A;9) is a trigonometric polynomial of degree )\3 Since
A< (23" ) =2% <>\2 we have

e[ N1 1] =\ (N1).

Hence,
n—1 1 n 1
S 2 — oK) 0| < 2 7 )
j=17 J=
Finally we consider j = n. If
A
o) (1) =Ao+ > (A,,cosmt+ B, sinmt),
m=1
then
A
¢y M\ 1)=Ao+ 2 (A, cosmA,t+ B, sin),1).
m=1
Hence,
A’l
e[ e, (Aa2);0]=Ao+ 2 A,=5,[¢;0] 3)
m=1

The lemma follows from (1), (2), (3), and lemma 3.

EXERCISE: For each j €/ let X, be the set of values of k > 1 such either coskz or sinkz
has a nonzero coefficient in the Fourler series for 4@()\ 1). Show that the X; are disjoint.
This is the key to the above proof.

EXERCISE: Show that there is a continuous function whose Fourier series vanishes at
every rational multiple of 2.
Start by letting f be as before but with A, =n! - 2%, Show that for m € I, f differs by a
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trigonometric polynomial from a function that is periodic with period (27)/(A,,). Hence,
the Fourier series for f diverges at 27 (j)/(A,,) for every integer j.

Il. Egoroff’'s theorem and Lusin’s theorem

12.7C J. E. Littlewood formulated three principles that underline the theory of Le-
besgue integration—namely,

1. Measurable sets are “almost” a union of a finite number of intervals.

2. Pointwise convergence of a sequence of measurable functions is “almost” uniform
convergence.

3. Measureable functions are “almost” continuous.

Statement 1 is simply a way of looking at
mE=glb.mG

for open sets G containing the measurable set F, together with 5.4 F. Statements 2 and 3
are ways of looking at Egoroff’s theorem and Lusin’s theorem, which we now present.
We will abbreviate “almost everywhere” as a.e.

THEOREM. (Egoroff) Let {f,}_, be a sequence of measurable functions on [a,b]
such that
Jim f, (x)=f(x) ae (a<x<b).
Then given €>0 there exists a closed set F C[a,b] such that mF’<e and such that
{ £}~ converges uniformly to f on F. (Here, as usual, F'=[a,b]— F.)

SKETCH OF PROOF: For each n€ 1 let g, =|f, — f|. Given n,p €1 let

E, ,= {xe[a,b] gk(x)<% (k>n)}.

Then E, , is measurable,
E ,CE,,C...,

and

o0
UE,,|=b—a

n=1

m

Hence, for each p there exists n(p) such that
’ €
mE,,(p),p < 2
Let
0
E= En(P),P'
=1
Then mE’< e and { f,}-, converges uniformly on E to f.

EXERCISE: Fill in the details and finish the proof.
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12.7D If the range of the real-valued function f on [a,b] is finite, we call f a simple
function. Thus, if f is simple and the range of f is the set {¢,,c5,...,c,}, then

f=2 kX k
k=1
where x, is the characteristic function of the set
E,={x€[a,b]|f(x)=¢}.
There is an approach to the study of the Lebesgue integral that makes great use of

simple functions. In this approach the following theorem is crucial. (We will use it in
proving Lusin’s theorem.)

THEOREM. Let f be a nonnegative-valued measurable function on [a,b]. Then there
exists a sequence {s,}>-; of measurable simple functions on [a,b] such that

n=1
0< s (X)<sy(x)< -+ <5 (x)< -+~ (a<x<b)
and

nli)n(}o s,(x)=f(x) (a<x<b).

SKETCH OF PROOF: For each N €1 let

k-1 k
EN,k={xe[“’b]‘ o~ <f(X)<5;} (k=1,2,...,N2Y),

and let
Ey={x€[ab]|f(x)>N}.

Define s, as

-1
SN(x)= 2N

sy(x)=N (x€Ey).
Then if f(x) < N, we have |sy(x)—f(x)|<(1)/2").

(XEEy s k=1,2,...,N2").

EXERCISE: Fill in the details and finish the proof.

12.7E  Now for Lusin’s theorem. Let f be a real-valued function on [a,b]. We say that f
has property C if, given € >0, there exists a closed set F C[a,b] such that mF’'<e and
such that the restriction of f to F is continuous.

EXERCISE: Show that every measurable simple function has property C.

THEOREM. (Lusin) Every measurable function on [a,b] has property C.
SKETCH OF PROOF: If f is measurable, then there exists a sequence {s,}5_, of measur-
able simple functions that converges to f on [a,b]. Each s, has property C. Fix ¢ >0. For

each n there exists a closed set F, C[a,b] such that mF,<(€)/(2"*") and such that the
restriction of s, to F, is continuous.
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There also exists a closed set F,C[a,b] such that mFj<e/2 and such that {s,}%_,
converges uniformly to fon F,. Let F=FyNn F,N F,N---.

EXERCISE: Fill in the details and finish the proof.
12.7F The converse of Lusin’s theorem is also true.

THEOREM. Let f be a real-valued function on [a,b]. If f has property C, then f is
measurable.

SKETCH OF PROOF: Suppose f has property C. For each n € I choose a closed set F,, such
that mF,, <1/n and such that the restriction of f to F, is continuous. Then there exists a
set A C[a,b] of measure zero such that

0

[a,b]= U F,ud.

n=1
Given s € R the set
E={xE[a,b]|f(x)>s}
is the union of the sets
E,,={x€F,,|f(x)>s}

together with a set of measure zero.

EXERCISE: Fill in the details and finish the proof. When do you use the fact that each
F is closed?

n

MISCELLANEOUS EXERCISES

1. Show that there exists a function f on (0, 1] that is continuous and for which the
improper integral f}. f exists but such that f & £[0, 1].

2. Prove that there exists a closed set F C[0,1] such that F is nowhere dense and such
that 0< mF< 1.

3. Find a bounded measurable function f on [0, 1] such that

L1769 =g(xlax>0

for every g€ R [0, 1].

4. Let { f,}_, be a Cauchy sequence in £%[a,b). Prove that { f,}%°_, has a subsequence
that converges almost everywhere on [a, b].

5. Let {f,}%_, be a sequence in £7a,b). Suppose that

nliglo f(x)=f(x) ae. (a<x<b)
for some (measurable) function f on [a,b], and that
lim || £, ~ gll, =0
for some g € £¥[a,b]. Prove that
f(x)=g(x) ae. (a<x<b).
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11.

12.
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. Leta=ay,<a;<--- <a,=b.If f:[a,b]>R and f is constant on each open interval

(aj_l,aj) for j=1,---,n, we call f a step function. (We make no restriction on the
values f(a;).)
Prove that the set of all step functions is dense in £7a,b].
If f € £*[a,b), prove that there exists a sequence of step functions {®,}%_, such that
nlirrolo ®,.(x)=1(x) ae (a<x<b).

Suppose f, F are as in Lusin’s theorem. Prove that there exists g € C[a,b] such that
the set

{x€e [a,b]|f(x)#g(x)}
has measure <, and such that
max |g(x)|=max|f(x).

Recall the properties of limsup,_, E, from Section 2.12.
Let {E,} be a sequence of measurable subsets of [a,b] such that

(>0
> mE,< 0.
n=1

Prove that the set limsup,_, E, has measure zero.

Deduce that almost all points of [a,b] belong to only a finite number of the E,.
Let f be a measurable function on [a,b]. Prove that there exists a sequence { g,}7-,
of continuous functions on [a,b] such that

nango g,(x)=f(x) ae (a<x<b).

Let f be any measurable function on [a,b]. Prove that there exists a sequence
{®,}5_, of step functions on [a,b] such that

n=1
lim @,(x)=f(x) ae (a<x<b).

(This improves on exercise 7.)

Let f and {f,}%., be functions in £2[a,b]. Assume that
Jim f, (x)=f(x) ae. (a<x<b)
and that
Tim ||, =11 £l
Prove that

lim, |/, f1l,=0.



APPENDIX

THE ALGEBRAIC
AND ORDER AXIOMS
FOR THE REAL NUMBERS

| ALGEBRA

The real number system is an ordered triple (R, +, - ) where R is a set and + and -
are functions from R X R into R.

For a,b€ R we will write +{a,b) (i.e., the image of the pair {a,b) under +) in the
customary form a + b, or, in some cases, (a)+ b,a+(b), or (a)+(b). Similarly, the image
of {a,b) under - will be written as ab,a-b, a(b),(a)b, or (a)(b), depending on the
context.

We assume that the following axioms are satisfied.

For +:

Al. (THE COMMUTATIVE LAW FOR ADDITION.)
atb=b+a (a,bER).
A2. (THE ASSOCIATIVE LAW FOR ADDITION.)
a+(b+c)=(a+b)+c (a,b,cER).

A3. (THE EXISTENCE OF AN IDENTITY FOR ADDITION.) There exists an element O in R
such that

a+0=a (aER).

A4. (THE EXISTENCE OF INVERSE ELEMENTS FOR ADDITION (NEGATIVES).) If a €R, then
there exists b € R such that a+ b=0, where 0 is as in A3.
For -:

MI. (THE COMMUTATIVE LAW FOR MULTIPLICATION.)

ab=ba (a,bER).

388
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M2. (THE ASSOCIATIVE LAW FOR MULTIPLICATION.)
a(bc)=(ab)c (a,b,cER).

M3. (THE EXISTENCE OF AN IDENTITY FOR MULTIPLICATION.) There exists an element 1
in R such that

l-a=a (aER).

M4. (THE EXISTENCE OF INVERSE ELEMENTS FOR MULTIPLICATION (RECIPROCALS).) If
a € R and a#0, there exists b € R such that ab=1, where 1 is as in M3.

The final axiom is the distributive law.

D. If a,b,cER, then

a(b+c)=ab+ac.

All of the familiar laws of elementary algebra can be deduced from these nine axioms.
We shall prove some samples. We first give five theorems concerning multiplication.

THEOREM 1. If a0 and ab=ac, then b=c.

PROOF: By M4 there exists x € R such that ax =1. Then, by M1, we have xa=1. From
ab= ac we then have x(ab)= x(ac), since - is a function. Therefore, by M2, (xa)b=(xa)
¢. Since xa=1, this yields 1:-b=1-c. Hence, b=c by M3 and the proof is complete.

THEOREM 2. The element 1 in M3 is unique.

PROOF: Suppose there were an element 1’ satisfying 1’-:a=a for all a. Then I'-1=1=
1-1. Hence, by M1, 1-1’=1-1. By theorem 1 this implies 1’=1 so that 1 is unique as
asserted.

THEOREM 3. If a,b € R and b#0, there exists a unique x € R such that ax=b.

PROOF: By M4 there exists y € R such that ay=1. Let x=yb. Using M2 and M3 we
then have ax=a(yb)=(ay)b=1-b=5b.

This shows that an x exists such that ax=»5. If, also, ax’=b, then ax=ax’. Hence,
x=x' by theorem 1, which shows that x is unique.

As is customary, we denote the x for which ax =5 by b/a. We denote the x for which
ax=1bya~'. Thatis,a '=1/a.

THEOREM 4. If a,bER and a0, then b/a=b-a~".

PROOF: Let x=b/a and let y=b-a~'. By definition of b/a we have ax=b. Also we
have ay=ya=(b-a "a=b(a " '-a)=b(a-a”"). But a-a~'=1, by definition of a~'.
Hence, ay=b-1=b. So ax=ay=>5. By theorem | we have x=y, which is what we

wished to prove.

THEOREM 5. If a0, then (a™")"'=a.
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PROOF: Let b=(a"")"'. We have a-a~'=1, by definition of a~!. Also a~!-b=1 by
definition of (a~')~". Therefore a~'-a=1=a"!-b. Theorem 1 then implies that a = b.

Theorems 6-10 concern addition and may be proved in exactly the same manner as
theorems 1-5. Simply substitute + for - and use the A axioms instead of the correspond-
ing M axioms.

THEOREM 6. If a+b=a+c, then b=c.
THEOREM 7. The element 0 in A3 is unique.

THEOREM 8. If a,b € R, there exists a unique x € R such that a+ x=b.

As is customary we denote the x for which a+ x=5 by b—a. We denote the x for
which a4+ x=0 by —a. Thatis, —a=0—a.

THEOREM 9. If a,bER, then b—a=b+(—a).
THEOREM 10. If a €R, then —(—a)=a.

Next we prove results involving (at least implicitly) both addition and multiplication.
The reader should provide support for the assertions in the proofs.

THEOREM 11. If a,b,c ER, then a(b—c)=ab— ac.

PROOF: Let x=a(b—c),y=ab—ac. Then ac+x=ac+a(b—c)=a[c+(b—c)]=ab.
Also ac+y=ac+(ab—ac)=ab. So ac+x=ac+y. Hence, x=y.

THEOREM 12. If a€R, then 0:a=4-0=0.

PROOF: We have 0+0=0. Hence, a-(0+0)=a-0. Therefore, (a-0)+ (a-0)=(a-0)+0.
Hence, a-0=0.

THEOREM 13. If ab=0, then either a=0 or b=0.

PROOF: Suppose a#0. We must show that b=0. We-have b=b-1=b(a-a~')=(ba)a "
=(ab)a~'=0-a”'=0.

THEOREM 14. If a,b € R, then (— a)b= —(ab).

PROOF: Let x=(—a)b,y=—(ab). Then ab+x=ab+(—a)b=ba+ b(—a)=bla+(—
a)]=b-0=0. Also, ab+y=ab+[—(ab)]=0. So ab+ x=0=ab+y. Hence, x=y.

THEOREM 15. If a,b € R, then (—a)(— b)=ab.

PROOF: Let x=(—a)(—b). Then x= —[a(—b)]= —[(— b)a]l= —[— (ba)]=ba. So
x=ab.

THEOREM 16. If a,b,c,d €R, and if b#0,d+0, then
a,c_ ad+ bc

b d bd
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PROOF: Letx=a/b+c/d, y=(ad+ bc)/bd. Then
(e + )0 2) + 0 5) = £)+ o0 5)
=d[b-(%)]+b[d-(%)}=da+bc=ad+bc.
Also, (bd)y =(bd)-((ad+ bc)/ bd)= ad + bc. Hence, (bd)x =(bd)y, so x=y.

These results should be enough to convince the reader of the truth of our assertion
that all formulae from elementary algebra can be derived from the nine axioms. For an
exercise, try to prove the following:

17 '=1,

(ab)"'=a" b7,
(%)-(§)=% if b#0,d+0,
—(a+b)y=—a—b.

Il ORDER

We now turn to the question of order. We impose the additional assumption on R:
ORDER AXIOM: There exists a subset R * of R such that

Ol. If x,yeER™*, then x+y,xyER™.
02. If x€R and x+#0, then either xER™* or —xER ™.
03. 0ZR ™.

We call the numbers of R * positive.
With regard to O2, if x+0, then it is not possible for both x and — x to belong to R *.
Forif xR * and —x& R ¥, then, by Ol, 0= x +(— x) would belong to R *, contradict-

ing O3.
We now define the traditional inequality signs.

DEFINITION. Let x,y € R. Then
x<y or y>x

means that y—x€R ™.
Also,

x<y of y>x

means that either x=y or x<y.
Here are a few of the familiar inequality laws.

THEOREM 1. If a,b € R, then precisely one of the following statements holds:
a=b,
a<b,
b<a.
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PRCOF: First suppose a=5b. Then b—a=0 so that b—a& R ™. Hence, a<b does not
hold. Similarly, a—b=0 so that a—b& R *. Hence, b < a does not hold.

Next suppose ab. Then b—a#0. By 02, either b—a&€ER™* or a—b=—(b—a)E
R *, but not both. Hence, either a < b or b < a, but not both. This completes the proof.

THEOREM 2. If a,b,cER and a<b, then a+c<b+ec.

PROOF: Since a< b, we have b—a& R ™*. Hence, (b+c)—(a+c)=b—aERT, so that
a+c<b+ec.

THEOREM 3. If a<b and b<c, thena<e.

PROOF: By assumption both b—a and ¢— b belong to R*. By Ol, so does the sum
(b—a)+(c—b)=c—a. Hence, a<c.

THEOREM 4. If a<b and ¢ >0, then ac < bc.

PROOF: By assumption b—a and c¢=c—0 are in R*. By Ol so is their product
¢(b—a)=bc—ac. Hence, ac < bc.

THEOREM 5. If a€ R and a0, then a*>>0.

PROOF: Since a#0, by theorem 1, either 0 < a or a <0 but not both. If 0< a, then, by
theorem 4, 0-a<a-a so that 0<g? On the other hand, if ¢ <0, then 0—a=—a
belongs to R*. Hence, by Ol, so does (—a)(—a)=a% Thus a’=a*—0€R™* and so
0<a?

THEOREM 6. If a<b and ¢<O0, then ac > bc.

PROOF: Since ¢<0 we have —c=0—c&E R *. Hence, —c>0. By theorem 4 it follows
that a(—c)< b(—c). Hence, —ac< —bc so that —bc—(—ac)eR*. That is, ac— bc €
R * so that bc < ac.

These should suffice to show that all inequality formulae can be derived from the
order axiom (together with the algebra axioms). For an exercise the reader should try to
prove the following:

1>0.

If ab>0, then either ¢ >0, >0 or a<0,b<0.

If xR, then x2+1>0. (Hence, there is no x € R such that x>= —1.)
If0<a<b, then 0<b~'<a™l.

il THE INTEGERS AND THE RATIONAL NUMBERS

If ACR™, we say that A4 is a set of induction if

l1eA4
and if
xEA implies x+1€A4.

For example, R* is a set of induction.
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THEOREM. Let I be the intersection of all sets of induction. Then I is a set of induction.

PROOF: Since the number 1 is in every set of induction, it follows that 1 is in the
intersection of all sets of induction. Thus

1€l

Now suppose x € I. We will show that x+1& . If 4 is any set of induction, then, by
definition of I, we have x €4 so that x+ 1€ 4. Thus if x €1, then x + 1 is in every set of
induction and so x + 1 is in the intersection of all sets of induction. That is,

x€Il implies x+1€1.
This completes the proof.

DEFINITION. The elements of I are called positive integers. The number n € R is called a
negative integer if —n € I. Finally, we say that n is an integer if either n=0or n is a
positive or negative integer.

DEFINITION. If x € R, we say that x is rational if there exist integers a,b with 570 such
that x=a/b. If x ER but x is not rational, we say that x is irrational.

If a is an integer, then a=a/1 and so a is rational. That is, every integer is a rational
number.

IV COMPLETENESS

It is not difficult to show that the set of rational numbers obeys the same algebra and
order axioms as the set of reals does. Another axiom is therefore required to distinguish
the reals from the rationals. Such an axiom (called a completeness axiom) can take many
forms. We present it as the Least Upper Bound axiom in Section 1.7. The reader who
wishes to proceed in strictly logical order should turn to that section, after finishing this
Appendix.

V  ABSOLUTE VALUES

If xE€ R and x >0, we define |x| to be x. If x <0, we define |x| to be — x. Finally, we
define |0| to be 0. Thus |x| >0 for all x€ R and —|x|< x <|x]|.

THEOREM. If x,y €R, then
|x+y[<|x|+]y] (M
and
Ixp[=1x]-|y]. )

PROOF: Since x <|x|,y <|y| we have

x+y <[x[+]y]. (€)
Since —|x|< x, —|y|< y we have
—|x|=lyl<x+y
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or
—(x+y)<|x|+|y]. (4)

If x+y>0, then |x+y|=x+y, so (1) follows from (3). Otherwise, x+y <0 so that
|x+y|=—(x+y) and (1) follows from (4). We leave the proof of (2) as an exercise.

For a,b,cER, let x=a—c¢ and let y=c—b. Then x+y=a—b and we deduce from
the preceding theorem the inequality,
la—b|<|a—c|+|c—b|.
Since the geometric interpretation of. |[x—y| is the distance from x to y, this last
inequality says that the distance from a to b is never more than the distance from a to ¢
plus the distance from c to b.




Special Symbols

. Symbol

|x+y]<|x|+1yl

3/2 and —9/276; 1
x <y then —x>—y'
x2=2; a'/?; a*.q”

\/a
(— o0, 0)

[a,]

a,b)

{{xp)|x >0,y >0}
a€{a,b,c} butdz{a,b,c}
AUB; ANB

%)

ACB; BDOA; Bz C

Description

absolute value bars; less than or equal

to
shilling fractions; case fractions
less than; greater than

superscripts

radical sign

infinity

brackets

angle brackets

set braces; greater than or equal to
is an element of; also with cancel
union; intersection

empty set

included in; contained in; also with

cancel

395
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- =

g°f

T, X45 € 0, A; 0,; and so on

f(x)
8(x)

7,
2 s
U:°=1An

[
anz’ 04, Ik,

b,#a,

lim s,=L

n—oo

lim, , s,=L

n— o0

S=CUD; H=Uges G
(n+k—2)
n—1

Jj=1
2:omlan

X 1a,<Z7.0b

n=1%n

f “sdb

c

f%m=m

d
c

llsll>0
ei“0=cosx@+sinxd
E

dy

= H(=/’(c)z dy/dx|, .

single arrow; double-shaft arrow

open dot (composition)

cap and l.c. Greek alphabet; also as

superscripts and subscripts

built-up fraction

boldface union symbol with side heads;

also intersection

combinations of superscripts and sub-

scripts

not equal to
limit (in display)
limit (in text line)

cap and l.c. sript letters;
also as subscripts

2-or-more-line matrix

summation (in display)

summation (in text line)

nested angle symbol

integral with side heads;
vertical bar with side heads

norm (double bar)
variation

letter with overline

differential in display; in text line
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ff; Then ffis;

E E

h(y)

[ 7

E\UE,
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approximation

integral with subscript; in text line;
with intersection subscript

letter with accent






Abel, 88

summability, 271
Abel’s:

lemma, 90

test, 91

theorem, 272
Absolute convergence:

of improper integrals, 211, 218

of series, 74
Absolute value, 1, 393
Absolute value metric, 118
Algebraic number, 23
Almost everywhere, 180
Alternating series, 73
Archimedean, 25
Arzela’s theorem, 290
Ascoli’s theorem, 290

Baire category theorem, 144
Ball, 132
Bernstein polynomial, 284
Bessel’s inequality, 365, 377
Binary expansion, 21
Binomial theorem, 242
. Bolzano-Weierstrass theorem, 156
Bounded:

above, 24

below, 24

function, 164

sequence, 37
_set, 24, 153

INDEX

Cantor set, 22, 305
Cartesian product, 8
Category, 144
Cauchy:
Buniakovsky inequality, 94
condensation test, 87
criterion for uniform convergence, 257
principal value, 222
sequence, 54, 123
(C,1) Cesaro summability:
of Fourier series, 362
of sequences, 58
of series, 92
Chain rule, 195
Change of variable, 208
Characteristic function, 15
Class, 3
Closed set, 138
Closure of a set, 138
Cluster point, 120, 175
Compact, 160, 163
Comparison test, 82
Complement, 6
Complete:
metric space, 156
orthonormal family, 378
Component:
interval, 181
subset, 316
Composition of functions, 11
Conditional convergence:

399.
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of improper integrals, 213, 219
of series, 75
Connected, 150
Continuous, nowhere differentiable function,
277
Continuous function:
on a metric space, 133
at a point, 126, 132
Contraction, 158
Convergent:
improper integral, 212, 218
sequence, 33, 123
sequence of functions, 252
series, 68
of functions, 264
Convolution, 352
Countable, 17

Darboux property, 202
Decimal expansion, 21, 97
Dense, 141
Denumerable, 17
Derivative, 193
Diameter, 153
Difference set, 347
Dini’s theorem, 258, 266
Dirichlet kernel, 359
Divergent:
improper integral, 212, 219
sequence, 33
series, 68
Diverges to infinity, 35
Domain of a function, 8
Dominated, 81

Egoroff’s theorem, 384
Element, 3
Empty set, 5
Epsilon dense, 155
Equicontinuous, 290
Equivalent:

metrics, 124

sets, 17
Even function, 357
Exponential function, 226
Extended real numbers, 171
Extension of a function, 10

Fatou’s lemma, 339
Fejer:
kernel, 362
theorem, 362
Finite intersection property, 162
\ Finite set, 17
Fixed point, 159

Fourier:
coefficients, 357, 375
series, 357, 375
Fubini’s theorem, 350
Function, 8
Fundamental theorem of calculus:
first, 205
second, 208

Gamma functijon, 353
Generalized derivative, 369
Geometric series, 70
Greatest lower bound, 24

Harmonic series, 71

*~ Heine-Borel property, 161
Homeomorphism, 141
Hyperbolic functions, 224

Image, 8
Improper integral:

first kind, 211

second kind, 218
Indeterminate form, 247, 250
Infimum, 173
Infinite set, 17
Infinite series, 68
Inner measure, 302
Inner product, 373
Integer, 1, 392
Integrable, 183, 318, 328, 330
Integral test, 215
Intersection, 4
Interval, 2
Inverse function, 16, 166
Inverse image, 8
Irrational number, 1, 393
Isolated point, 175
Isometry, 178

Laplace transform, 351
Law of the mean, 203
‘Least upper bound, 24
Lebesque:

dominated convergence theorem, 337

integral, 318, 328, 330
Legendre functions, 374
Leibniz rule, 119
Length:

closed set, 302

open set, 299
L’Hospital’s rule, 245
Limit:

of a function, 108, 121

point, 138



of a sequence of numbers, 29
Limit inferior, 50, 66
Limit superior, 48, 66
Lipschitz condition, 288
Littlewood, 384
Logarithm, 228
Lower:

bound, 24

integral, 182, 317

sum, 118, 316
Lusin’s theorem, 385

Maclaurin series, 236, 271
Mapping, 8
Matrix method of summability, 102
Maximum, 164
Mean value theorem:

for derivatives, 203

for integrals, 211, 238
Measurable:

function, 311, 349

set, 303, 349
Measure, 303, 349
Measure zero, 179
Merten’s theorem, 105
Metric, 118
Metric space, 118
Minimum, 165
Minkowski inequality:

for integrals, 342

for series, 95
Monotone:

function, 115

sequence, 38
Multiplication of series, 79, 80, 115

Nested interval theorem, 57

generalization, 178
Nondecreasing:

function, 115

sequence, 38
Nonincreasing:

function, 115

sequence, 38
Nonmeasurable set, 309
Nowhere dense, 144
Nowhere differentiable continuous function,

277

0Odd function, 357
One-to-one (1-1), 16
Onto, 11

Open ball, 130, 132
Open set, 134
Ordered pair, 8

INDEX

Orthogonal, 374
Orthonormal family, 374
Oscillating sequence, 36
Oscillation of a function, 143
Outer measure, 302

Parseval’s equality, 368, 379
Partial sum, 68

Partially ordered, 100
Partition, 316

Picard:

401

existence theorem for differential equa-

tions, 288
fixed point theorem, 259
Pointwise convergence:
sequences of functions, 252
series of functions, 264
Polynomial:
approximation, 283
function, 20
Pringsheim’s theorem, 88

Rademacher functions, 374
Range of a function, 8

Ratio test, 83

Rational number, 1, 392
Real-valued function, 14
Rearrangement of series, 78
Refinement, 180, 316

Regular summability method, 64
Restriction of a function, 10

. Riemann-integrable, 183

Riemann-Lebesque theorem, 370
Riesz-Fischer theorem, 343, 367
Rolle’s theorem, 200

Root test, 84

Russell’s paradox, 100

Schréder-Bernstein theorem, 99
Schwarz inequality:

for integrals, 341

for series, 94

‘Sequence, 27

Set, 3, 101
Simple function, 385
Square integrable, 341
Step function, 387
Stone-Weierstrass theorem,
292
Strictly decreasing, 116
Strictly increasing, 116
Subdivision, 180
Subsequence, 28
Summation by parts, 89
Supermum, 173
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Tauber’s theorem, 275
. Taylor series, 236
Taylor’s theorem:
with Cauchy remainder, 240
with integral remainder, 237
with Lagrange remainder, 238
Ternary expansion, 22
Tietze extension theorem, 295
Tonelli-Hobson theorem, 351
Totally bounded, 154
Transcendental number, 23

Uncountable, 17

Uniform continuity, 167

Uniform convergence:
power series, 266
sequence of functions, 256

series of functions, 265
Union, 4
Upper:

bound, 24

integral, 182, 317

sum, 181, 316
Urysohn’s lemma, 297

van der Waerden, 279

Weierstrass:
approximation theorem, 283
continuous, nowhere differentiable
function, 279
M-test, 265

Zorn’s lemma, 100



